
On a multiple sequential test

Albrecht Irle1 and Vladimir Lotov2

1 Christian-Albrechts-University,
Ludewig-Meyn-Str. 4,
D-24098 Kiel, Germany
irle@math.uni-kiel.de

2 Sobolev Institute of Mathematics,
Novosibirsk State University,
630090 Novosibirsk, Russia
lotov@math.nsc.ru

Abstract. We consider a multiple testing problem based on an i.i.d. sample of K-dimensional observations. We want to test
whether at least one of the unknown means is positive. We propose a sequential test which is of the nature of a multiple
sequential probability ratio test. We asymptotically analyse the expected sample size and compare it to the sample sizes which
arise when one looks at effects separately.
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Let {X(1)
n }, ... , {X(K)

n } be sequences (not necessarily independent) consisting of i.i.d. random
variables within each sequence. Denote S

(i)
n = X

(i)
1 + . . . + X

(i)
n , n ≥ 1, and for arbitrary b > 0

V
(i)
b = inf{n ≥ 1 : S(i)

n ≥ b}, i = 1, . . . , K.

using inf ∅ = ∞. Denote
Vb = min

1≤i≤K
V

(i)
b .

It is our aim to investigate the expected sample size EVb in relation to min
1≤i≤K

EV
(i)
b .

This problem arises, for example, in clinical trials. Suppose first that K = 1. After applying a
likelihood ratio principle and a suitable normalization, we come to a special random walk which has
non-positive drift under hypothesis H1 (no harmful effect of a drug) and positive drift under H2 (that
corresponds to a harmful effects of a drug). The decision for H2 is taken when our random walk achieves
a given level b before a certain time m, and validity of H2 should be detected as soon as possible.
This problem was treated by Irle and Lotov (2004). Assume now that we monitor K > 1 different
harmful effects of a drug so we could consider not one but K > 1 sequences of observations and,
correspondingly, K random walks simultaneously. In this case, the decision for H2 could be taken when
at least one trajectory achieves the level b before time m. Under this setting, how much is the saving in
sample size in comparison to the case K = 1?

It is clear that EVb ≤ EV
(i)
b for each i = 1, . . . , K, so EVb ≤ min

i
EV

(i)
b . We assume that, for

some δ > 0,
E |X(i)

1 |2+δ < ∞, i = 1, . . . , K, and set

E X
(i)
1 = µi.

Suppose that
µ1, . . . , µl > 0, µl+1, . . . , µK ≤ 0

and µ1 = max
j

µj . It is well-known that, as b →∞,

EV
(i)
b =

b

µi
(1 + o (1)), i = 1, . . . , l, EV

(i)
b = ∞, i = l + 1, . . . , K.
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It is our aim to compare EV
(1)
b , the asymptotically smallest value, with EVb, hence investigate the

quantity

∆b = EV
(1)
b −EVb.

We obtain the following result:

Suppose that µ1 > µi, 1 < i ≤ l so that there is a unique dominant mean µ1. Then we have

∆b = O(b−
δ
2 ), b →∞.

Suppose that µ1 = · · · = µj , 2 ≤ j ≤ l, and µ1 > µi for j + 1 ≤ i ≤ l, so there are two or more
dominating effects. Then we have

∆b = C
√

b + o(
√

b), b →∞,

for some constant C > 0 which is calculated in an explicit form.
Hence looking at effects simultaneously may lead to a noticable saving in sample size in comparison

to looking at effects separately.
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