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Abstract. Detection of a progressive increase as soon as possible after the onset of the outbreak is of interest. A semipara-
metric method is constructed to detect a change from a constant level to a monotonically increasing function. It is applied to 
Swedish incidence data. The suggested method is compared with subjective judgments as well as with other algorithms. The 
conclusion is that the method works well.  
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1 Introduction 
To monitor an on-going process in order to detect a change is important in many areas: industrial 
process control, environmental monitoring and public health surveillance. In public health surveil-
lance we can be interested in the time of the outbreak, for example of influenza. (Farrington, An-
drews, Beal, et al. (1996)) have suggested a parametric surveillance method for influenza, where the 
in-control model is estimated from previous data. This works well for detecting an influenza season 
that is different from the average season. It will also indicate an outbreak that starts earlier than usual, 
but it will not call an alarm for the outbreak of a late season. We will suggest and evaluate a method 
which is suitable for outbreak detection also for seasons which do not agree with the average season. 

Surveillance is detection of deviation from an in-control state. In order to detect the change of impor-
tance, we use a surveillance system consisting of an alarm statistic and an alarm limit. The monitored 
process is denoted X. At each decision time, s, we want to discriminate between two events, here de-
noted C (the change has occurred) and D (the change has not occurred yet).  It has been shown that 
alarm systems based on likelihood ratios (between C and D) are optimal. The likelihood ratio (be-
tween C and D) is 
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where Xs={X(1), X(2), ..., X(s)}. The partial likelihood ratios are 
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The full likelihood ratio is the weighted sum of the partial likelihood ratios  
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where wj= ( ) / ( )P j P sτ τ= ≤ .  

The full likelihood ratio is optimal in the sense that it minimized the expected delay for a fixed false 
alarm probability (Shiryaev (1963)). The maximal likelihood ratio is optimal in a minimax sense 
(Moustakides (1986)).  
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The change that we want to detect can be a step-change (shift in mean, variance or autocorrelation) or 
it could be a gradual change, e.g. a turning-point (change from expansion to peak to recession) or the 
onset of an outbreak (change from a constant level to an increasing function). Many surveillance me-
thods are based on the parameters of the in-control and out-of-control states being known or possible 
to estimate. In many situations, especially with complex changes (e.g. a turning point or an outbreak) 
these parameters might be difficult to estimate with certainty. Therefore non-parametric solutions are 
of interest. 

For outbreak detection Martìnez-Beneito, Conesa, López-Quílez, et al. (2008) suggest to monitor the 
differentiated series (Xt-Xt-1) in order to detect a change from white-noise process to an autoregres-
sive process of order 1. However, to differentiate data means that information is lost and the depen-
dency structure is changed. Mei (2008) discusses different ways to handle an unknown baseline at 
surveillance. We have developed a semi-parametric outbreak detection method, using the generalized 
likelihood ratio, GLR. This technique was used in previous work for turning point detection in busi-
ness cycles: the cycles are very irregular over time, both in amplitude and length (Andersson (2006)) 
and thus it is difficult to find a model which is valid over time. Therefore a semi-parametric approach, 
based on monotonicity restrictions, was suggested and evaluated, see Andersson (2002) and Anders-
son, Bock and Frisén (2006). The vulnerability of a parametric model for the cycles was especially 
noticable for the situation when the in-control state (the pre-turn slope) was mis-specified, see An-
dersson, Bock and Frisén (2005).  

In Section 2 we will describe the semiparametric method for outbreak detection, In Section 3 the me-
thod is evaluated and concluding remarks are given in Section 3. 

2 Semiparametric method for outbreak detection 
Our semiparametric method is parametric with respect to distribution as we use the regular exponen-
tial family but it is nonparametric with respect to the regression.  

At the start of an outbreak the incidence is characterized by a change from a constant level to an in-
creasing function. This was the start for the development of a semiparametric system for outbreak 
detection. Say that the outbreak starts at time τ . Then the expected incidence can be described as 

 (0) ... ( 1) ( ) ... ( )sμ μ τ μ τ μ= = − < ≤ ≤  

The monotonicity restriction contains two parts 

 (0) ... ( 1)μ μ τ= = −     

  and 

  ( 1) ( ) ... ( )sμ τ μ τ μ− < ≤ ≤ .     

2.1 Maximum likelihood estimator of the order restricted regression 
Frisén, Andersson and Pettersson (2009) give the maximum likelihood estimator of the outbreak re-
gression described above for the exponential family. For a specific value τ  the estimator is con-
structed by first computing a provisional series such that 
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The next step is to consider the second condition: 

  ˆ ( ) ( (0), (1),..., ( )t g t Y Y Y sτ τ τ τμ =  

where the function g(t) is the least squares estimator of the provisional series under the second mono-
tonicity restriction. The estimator can also be seen as a pool-adjacent-violators algorithm (PAVA, see 
Robertson, Wright and Dykstra (1988)). 

For certain distributions the least squares estimators given above are also maximum likelihood esti-
mators, for example the normal distribution and the Poisson distribution.  

2.2 A semi-parametric surveillance system 
We now have a maximum likelihood estimate of the outbreak regression. The next step is to derive a 
surveillance method where these ML-estimates are used. In Frisén and Andersson (2009) the genera-
lized likelihood ratio approach is used to derive an outbreak detection method, according to which an 
alarm is called when  
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where k is the alarm limit. For a normal distribution, the maximum likelihood alarm statistic becomes 
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where 1ˆ Cμ  and Dμ̂  are the maximum likelihood estimates under monotonicity restrictions 1=τ  and 
s>τ . This alarm statistic is denoted OutbreakN.  

In most public health applications, the Poisson distribution can be considered more interesting than 
the normal distribution. For Poisson, the maximum likelihood alarm statistic becomes 
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which is denoted OutbreakP. 

3 Evaluation of the outbreak detection system 
In Frisén and Andersson (2009), the OutbreakP method was evaluated in a simulation study. Data 
were generated from a model that mimics Swedish influenza data. A Poisson distribution for these 
data was suggested in Andersson, Bock and Frisén (2008). Observations were generated according to 
the following model 
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where Poi(*) refers to the Poisson distribution. The level 0μ  was roughly estimated to 0μ =1 from 
Swedish data for eight years. In Andersson, Bock and Frisén (2008) it was found that an exponential 
curve works well to mimic the increasing phase (for t≥τ ), so that ( )tμ = 0 1exp( ( 1))tβ β τ+ ⋅ − + . 
The parameters were estimated to 0β =-0.26 and 1β =0.826.  
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3.1 Evaluation measures in surveillance 
In surveillance we need evaluation measures that reflect the timeliness and the confidence of the 
alarms. When an alarm is called it can be a false alarm or a motivated alarm. The alarm limit can be 
set so that the false alarm property of the method is known. Examples of false alarm properties are the 
probability of a false alarm and the average run length to the first false alarm. A metric that mirrors 
the relation between the false alarms and the motivated ones is the predictive value (suggested by 
Frisén (1992)), i.e. the probability that the change has occurred given that an alarm is called: 

 PV(t) = ( )AP C t t=  

Note that PV is not necessarily constant over time. 

In Frisén and Andersson (2009) the alarm limit in the simulation study of OutbreakP is set so that the 
predictive value is higher than 0.99 at all time points, at least up to t=20.  

An important aspect for a surveillance system is a quick detection, i.e. a short time between the 
change and the alarm. This can be measured by the conditional expected delay 

 CED(t)= ,A AE t t tτ τ τ⎡ ⎤− ≥ =⎣ ⎦  

For many methods CED is not constant over t and it can be important to study the whole delay curve. 
In Frisén the delay of the OutbreakP method differed depending on τ , so that CED(1)=3.1 and 
CED(10)=2.2 and CED(20)=2.0. Thus, the delay is longest for early onsets. This is reasonable since 
we have no information regarding the baseline or the outbreak, but all information comes from data, 
which is sparse early on in the surveillance.     

3.2 Comparison to subjective judgement 
In Frisén, Andersson and Schiöler (2009) the semiparametric OutbreakP method is compared to the 
subjective judgments by twenty-six medically trained individuals. The subjective method was less 
efficient than the OutbreakP method. However, the main disadvantage for the subjective method 
turned out to be the large variation between the individuals. 

3.3 Comparison to the Shewhart method 
In Frisén and Andersson (2009) a robustness study was conducted, in which the parametric Shewhart 
method was compared to the semi-parametric OutbreakN method. Thus in this comparison the as-
sumption of a normal distribution was used. Observations were generated according to the following 
model 
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where 0μ =20, σ =10 and ( )tμ = 0 1exp( ( 1))tβ β τ+ ⋅ − +  and 0β =2.67, 1β =0.68. The robustness 
of the Shewhart method to a mis-specification was evaluated, i.e. i.e. the Shewhart method in which 
the wrong baseline ( 0μ + a) was used. A 95% confidence interval for 0μ  gave the limits 16 and 24 
and these values were used as the mis-specified values of the in-control level.  
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Table 1: Delay when the outbreak occurs at time τ , CED(τ ) 

 Shewhart correct Shewhart mis-spec  

(too high) 

Shewhart mis-spec  

(too low) 

OutbreakN 

τ =1 0.9 1.0 0.7 1.6 

τ =5 0.9 1.0 0.7 1.0 

τ =10 0.9 1.0 0.7 0.9 

 
Table 2: Predictive value of an alarm at time t, PV(t) 

 Shewhart correct Shewhart mis-spec  

(too high) 

Shewhart mis-spec  

(too low) 

OutbreakN 

t=1 0.3 0.4 0.3 0.8 

t=5 0.8 0.9 0.6 0.8 

t=10 0.8 0.9 0.6 0.8 

 

The conclusions from the tables are that when the baseline is overestimated, the CED is hardly better 
than for the nonparametric method and when the baseline is underestimated the PV is very low. Thus, 
uncertainty about the baseline will mean that the properties of the method are highly uncertain. 

4 Conclusion 
We have suggested a definition of outbreak which can be useful. This definition does only involve the 
monotonic increase and not the level of the baseline. Our method is thus nonparametric with respect 
to the regression. An advantage with knowledge of a parametric model is that more information is 
available and consequently a drawback of any non-parametric estimation is that the only information 
comes from data. Thus for very few data points (early on in the surveillance) the ability to detect 
changes is bound to be rather poor. However, for later changes the semi-parametric approach will 
work well since then data provide enough information and we avoid the traps of the mis-specified 
parametric approach. Our conclusion by the simulations and experimental evaluations and by applica-
tion of the method to Swedish data of some diseases is that the method is promising. 
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