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Abstract. There is much less literature on drift detection than on step change monitoring. Fortunately, the procedures
constructed for the step change behave quite well also for identifying drifts. The calculation of the usual performance measures
is more demanding under drift. Moreover, there are many types of special drift detection schemes. The talk will provide
numerical results and present various schemes.
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1 Introduction
Typically, change point detection schemes (control charts) such as Page’s CUSUM, Roberts’ EWMA,
and the Shiryaev-Roberts procedures are setup to detect a step change as quickly as possible while main-
taining a low false alarm rate. In practical applications, a change may happen gradually. Drifts linear in
time or in observation number are the most simple model. As usual, these models would already cover
a wide range of applications. Nevertheless, their numerical treatment, looking for optimal or nearly op-
timal schemes etc. is less intensively studied than for the popular step change model. While designing
a control chart it is not clear, whether a specific drift detection scheme should be set up or the usual
step change chart is needed anyway. Thus, one should not only construct new schemes, but also analyze
the performance of the classics under drift. Note that a very simple approach for constructing a linear
drift detection scheme could rely on the differences of the observed data sequence, which is something
like a signed Moving Range statistic. Davis and Woodall (1988) evaluated popular chart examples from
the quality circle world – the so-called trend rules. However, they conclude that they are ineffective in
detecting drifts. Most of the papers deploy Monte Carlo studies to get performance measures such as the
Average Run Length. The most accurate numerical algorithm was developped by Gan (1991, 1992). It
is surprising that nearly no other author is using his method. Here, his approach and one already used in
Knoth (2003) are utilized for one-sided EWMA, CUSUM and Shiryaev-Roberts schemes. Contrary to
the step change performance it is quite difficult to evaluate the drift performance of two-sided CUSUM
and Shiryaev-Roberts schemes. For all other schemes it is even more complicated so that Monte Carlo
studies dominate. The aim of this paper is twofold. First, it illustrates that on the current level of knowl-
edge, the classics could be used for drift detection. Second, it should inspire the SPC community to do
more in order to enhance the knowledge about drift detection.

2 Status quo drift detection with attention to numerical algorithms
One of the first papers is Bissell (1984) who already treated CUSUM charts under drift. His numerical
algorithm, a modified Markov chain approach, did not work well (also noted by himself in a correction)
and was refined in Asbagh (1985). Bissell’s conclusions regarding the choice of an appropriate scheme
are therefore not reliable. Then, in Davis and Woodall (1988) the Shewhart chart with trend rules was
analyzed. The authors clearly discourage from their usage. A more elaborated study was done in Aerne
et al. (1991), where based on Markov chain and Monte Carlo methods Shewhart charts with and without
runs rules, CUSUM and EWMA were considered. Basically, they finally suggest to apply the compet-
ing charts as in the step change case. That is, for small drift coefficients deploy CUSUM or EWMA,
otherwise Shewhart charts. In the same year, Gan (1991) published the first time his algorithm to attain
high accuracy in calculating Average Run Lengths of classical control charts under drift. His first paper
discusses two-sided EWMA charts. In Gan (1992) one-sided CUSUM charts were analyzed. His idea
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is simple and impressive. It should be sketched here for the two-sided EWMA chart. Beforehand, the
general change point model utilized in this paper is described.

Let X1, X2, . . . be a sequence of independent normal random variables with variance 1. Their mean
is under risk to change. Specifically,

E(Xt) =

{
µ0 = 0 , t < τ

µt−τ = (t− τ + 1)∆ , t ≥ τ
.

Note that Gan preferred µt−τ = (t − τ)∆ with the special feature E(Xτ ) = 0 = µ0. Here, the above
model is chosen. The parameter ∆ is the drift coefficient. Gan considered the case τ =∞ as in-control
scenario and τ = 1, as usual, as representative out-of-control pattern. Imagine now that the change, step
or drift, should be detected by an EWMA control chart. Thus, apply Roberts’ (1959) classic EWMA:

Z0 = z0 = µ0 = 0 ,
Zt = (1− λ)Zt−1 + λXt , λ ∈ (0, 1] ,

L = inf
{
t ∈ IN : |Zt| > c

√
λ/(2− λ) =: C

}
.

The most popular performance measure is the zero-state Average Run Length (ARL). It is defined as

ARL =

{
E∞(L) , in-control case: no change at all.
E1(L) , out-of-control case: change already at the beginning.

Is is a simplified measure and already often criticized. In the drift detection area, it is the dominating
one. Now Gan denoted with

Lj(y, µj)

the ARL for an EWMA chart starting at z0 = y and mean sequence µj = j∆, µj+1, . . . , µm, µm, . . .
He showed in Gan (1991) that for y ∈ [−C,C]

Lj(y, µj) = 1 +
∫ C

−C
Lj+1(y, µj+1)

1
λ
fµj

(
x− (1− λ)y

λ

)
dx , j = 0, 1, . . . ,m− 1 ,

Lm(y, µm) = 1 +
∫ C

−C
Lm(y, µm)

1
λ
fµm

(
x− (1− λ)y

λ

)
dx .

For fixed m, the latter integral equation can be solved as usual with the Nyström method utilizing a
reasonable quadrature method such as Gauss-Legendre. Afterwards, the first iteration sequence is ex-
ecuted by plugging in the same quadrature as for the integral equation. The final approximation of
L0(y = z0, µ1) (Gan took L0(y = z0, µ0)) provides the ARL E1(L). It remains the choice of the index
m. A simple idea is to increase m until L0(y = z0, µ0) remains constant. It depends heavily on the drift
rate ∆. Gan reported for ∆ = 1, .1, .01, .001 and .0001 the following values for m: 6, 30, 150, 700 and
2500, respectively. For implementing Gan’s algorithm one should hide the search for sufficiently large
m. The resulting procedure is slower than the method described in Knoth (2003). This algorithm could
also be used to calculate the ARL for drift. Additionally, it could be extended easily for the steady-state
ARL and ARL vehicles for 1 < τ <∞.

For CUSUM, in Gan (1996) the Algorithm AS 305 was published. In this paper Gan also mentioned
that the performance of the usual two-sided CUSUM chart – simultaneously running a lower and an
upper chart – could not not be treated under drift like under a step change. The problem occurs, e. g.,
by calculating the ARL of the lower chart, if an upwards drift is present. The above approach – increase
m until the resulting ARL does not change anymore – fails because Lm(y, µm)lower becomes larger for
increasingm. Or to put it in other words, if the lower chart does not signal already during the first drifted
values, then it becomes quite unlikely that it will ever signal. To sum up, except Monte Carlo methods
no other method is currently available for calculating reliably the ARL of two-sided CUSUM schemes
under drift.
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Already before Gan (1991), Sweet (1988) published an algorithm for monitoring data with potential
drifts. His coupled EWMA charts directly monitor the slope of the data:

S0 = µ0 = 0 ,
St = (1− λS)(St−1 +Bt−1) + λSXt ,

B0 = ∆0 = 0 ,
Bt = (1− λB)Bt−1 + λB(St − St−1) .

The sequence Bt is built for monitoring the trend slope. St is, more or less, the usual mean monitor.
Sweet’s framework allows also to monitor changes from one drift coefficent to another. The whole design
stems from the forecasting literature (Holt, 1960) and seems to be rarely discussed in SPC literature.
Sweet provides some guide lines to design the two control charts. Thereby, he tries to link distributional
properties of the sequences to the standard Shewhart 3σ rule. He did not calculate performance measures
like the ARL. It is not that surprinsing, because the design of these coupled EWMA charts is not easily
treated numerically. Thus, only Monte Carlo studies could be done.

A further contribution to both the modelling of the change point for potentially drifting data and new
monitoring procedures is Chang and Fricker Jr. (1999). They look at a broader class of drift patterns:
monotonically increasing means. However, they have a maximal value for the mean in mind. The aim
of their scheme is not to detect the drift itself, but the exceeding of that maximal value. This sounds rea-
sonable for some practical applications. Chang and Fricker Jr. evaluate one-sided CUSUM and EWMA
charts, and a GLR-like scheme. The latter is custom-built for detecting the exceedance of their threshold
mean under their more general mean drift model. The basic idea of GLR (generalized likelihood ra-
tio) in change detection is to dispense the explicite knowledge of the post-change parameters. Here, the
additional estimation task (under the monotonicity restriction) leads to isotonic regressions. Of course,
the complicate implementation of GLR schemes in general and specifically for the model here hampers
their application in practice. As side effect it offers a nice on-line estimate of the mean. However, Chang
and Fricker Jr. conclude that the classics are not outperformed by the specialized GLR procedure. Thus,
there is no reason to switch from the classics in the considered drift change point model. Note that the
authors calculated a kind of steady-state ARL with Monte Carlo studies. Thus, it is difficult to compare
it to any other analysis done for drift monitoring.

More recently, Reynolds Jr. and Stoumbos (2001), studied drift behavior in simultaneous monitoring
schemes (mean and variance). They allowed both drifts in mean and variance. All was evaluated with
Monte Carlo studies. It was concluded, not surprisingly, that EWMA outperforms the Shewhart coun-
terparts for small and moderate drift cofficients. Note that separate analysis of variance control charts
under drift would be a interesting and useful task.

Fahmy and Elsayed (2006) introduced a drift detection scheme based on slope estimates on rolling
windows. Afterwards, they compared their new chart with one-sided Shewhart, CUSUM and EWMA
charts, and drift GLR scheme under drift. They obtained their numbers by Monte Carlo simulation.
They concluded that their scheme is better than the classics under drift. Some more reflections about
their results will be given in the next section. Given the only slight performance advantages and the
higher complexity of the rolling window scheme, in application the classics would outlast.

The most recent paper is Zou et al. (2008). It gives a thorough introduction to the subject and a large
comparison study for one-sided EWMA, CUSUM, GEWMA (the smoothing constant λ is optimized
in a certain way), and GLR schemes for the step change and drift. All schemes are analyzed for drift
coefficients from very small up to large ones. They deploy only Monte Carlo studies. Based on ther
measure RMI (measures the performance over the whole range of considered drift coefficients) they
conclude that the more sophisticated schemes outperform the classics. This will be reviewed in the next
section.
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3 New and old Results
3.1 Fahmy and Elsayed (2006)
Start with a comparison of two-sided EWMA and CUSUM results given in Fahmy and Elsayed (2006)
and new ones based on a much more extensive Monte Carlo study and, for EWMA, on the Gan algorithm.

CUSUM EWMA
∆ FE (104) here (107) FE (104) her (107) here (Gan)
0 368.333±3.549 368.251±0.111 365.749±3.598 369.021±0.114 368.994

0.10 13.986±0.026 14.086±0.001 12.971±0.029 12.986±0.001 12.986
0.25 8.560±0.014 8.656±0.000 7.738±0.015 7.758±0.000 7.758
0.50 5.946±0.008 6.033±0.000 5.312±0.009 5.318±0.000 5.318
0.75 4.827±0.007 4.898±0.000 4.279±0.007 4.286±0.000 4.285
1.00 4.156±0.006 4.224±0.000 3.680±0.006 3.688±0.000 3.688
2.00 2.950±0.003 2.989±0.000 2.598±0.005 2.616±0.000 2.616

Table 1. Comparison of ARL values for two-sided CUSUM and EWMA charts under drift. FE denotes the numbers from
Fahmy and Elsayed (2006) based on a MC runs with 104 replicates. The remaining numbers stem from MC runs with 107

replicates and Gan’s procedure.

Note that the EWMA results of Fahmy and Elsayed (2006) match quite well to the more recent ones,
while there are some slight differences for CUSUM. Fahmy and Elsayed concluded that their rolling
regression chart (the resulting statistic is χ2-distributed) outperform the rest. This is mainly because
of their specific setup of the EWMA and CUSUM competitors. Taking different λ values changes the
picture, see Table 2:

FE χ2 EWMA
∆ w∗ = 3 w∗ = 5 w∗ = 20 λ = 0.2 λ = 0.3 λ = 0.5

0 379.138±3.790 370.048±3.682 373.458±3.546 370 370 370
0.10 17.445±0.056 16.047±0.049 12.860±0.035 12.747 13.041 14.136
0.25 8.537±0.032 8.127±0.023 7.623±0.018 7.304 7.231 7.497
0.50 5.027±0.021 4.869±0.013 5.260±0.012 4.881 4.722 4.706
0.75 3.672±0.017 3.673±0.009 4.250±0.009 3.886 3.715 3.620
1.00 2.939±0.014 3.055±0.007 3.660±0.008 3.318 3.149 3.023
2.00 1.816±0.003 2.042±0.000 2.579±0.000 2.254 2.124 2.005

Table 2. Comparison of the ARL values of Fahmy and Elsayed (2006) favorite schemes (χ2) and additional EWMA charts
under drift. The bold values mark the smallest ARL values.

Because the considered drift coefficients are quite large, one should apply λ values larger than 0.1.
Additionally, in other papers also much smaller drift coefficients are evaluated (see also next section).
Summing up, the rolling window procedure needs more computational efforts and exhibits not better
performance than classical control charts under drift.

3.2 Zou et al. (2008)
Zou et al. evaluated one-sided control charts. Among them are the classical EWMA and CUSUM chart,
the more sophisticated GEWMA (the smoothing constant of the EWMA sequence is permanently ad-
justed), and two GLR charts designed for step changes and drifts. All results were calculated by Monte
Carlo studies. Based on the measure RMI , which evaluates the robustness of the charts to various mag-
nitudes of drifts, they conclude that the GEWMA and the drift GLR outperform the rest. Nevertheless,
on smaller ranges of possible drift coefficients, the classics keep up with the newer ones or even beat
them. It seems so that mainly the specific dynamic adaption of one of the chart parameters gives the
more recent schemes some advance. In Table 3 the EWMA and CUSUM (zero-state) ARL results are
given now together with Shiryaev-Roberts ARL values under drift. To perform the comparison as in Zou
et al. (2008) the Monte Carlo results from their Table 1 are added.
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EWMA CUSUM GRSR GEWMA GLR-S GLR-L
∆ δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

0 1750 1747 1733 1741 1742 1735 1730 1730 1730 - - -
0.0005 318 378 437 345 412 468 337 399 448 375 381 368

0.001 215 254 295 231 276 316 227 267 301 252 257 249
0.005 83.5 92.2 106 86.7 98.3 112 85.8 95.7 107 96.2 97.8 95.4

0.01 55.7 58.7 66.3 57.0 61.9 69.4 56.6 60.4 66.6 62.1 63.3 62.0
0.05 22.6 21.1 22.0 22.6 21.6 22.6 22.7 21.4 22.1 22.4 22.7 22.5
0.1 15.5 13.9 13.9 15.4 14.0 14.2 15.7 14.1 14.0 14.4 14.6 14.5
0.5 6.65 5.56 5.09 6.60 5.54 5.16 6.84 5.76 5.32 5.10 5.23 5.18
1.0 4.67 3.83 3.43 4.63 3.80 3.45 4.86 4.03 3.66 3.26 3.38 3.31
2.0 3.21 2.74 2.32 3.17 2.67 2.32 3.42 2.91 2.59 2.09 2.16 2.12
3.0 2.86 2.06 1.98 2.79 2.04 1.96 2.97 2.20 2.02 1.69 1.75 1.72
4.0 2.14 2.00 1.83 2.10 1.98 1.74 2.39 2.20 1.97 1.31 1.37 1.34

Table 3. Zero-state ARL values of one-sided EWMA, CUSUM and Shiryaev-Roberts (GRSR) procedures. The schemes are
optimized for step changes of size δ. The corresponding λ values are 0.03479, 0.11125, and 0.23052. Additionally, the Monte
Carlo results for GEWMA, GLR-S, and GLR-L are taken from Table 1 in Zou et al. (2008). The smallest values are boldly
written.

Roughly speaking, the classical schemes do not differ heavily under drift in terms of the zero-state ARL.
Moreover, the EWMA (in it’s classical dress and as GEWMA) exhibits the best zero-state ARL behavior.
Note that the EWMA type schemes start at their mean level, while the other three schemes are evaluated
from their worst level.

Therefore, the next table shows all the related steady-state ARL values (but not for the sophisticated
schemes). They are calculated based on the algorithms described in Knoth (2003). Note that it could be
done also with Gan’s procedure together with the approximated left eigenfunction of the chart transition
kernel in the in-control case.

EWMA CUSUM GRSR
∆ δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

0.0005 314 376 436 340 410 467 333 397 446
0.001 213 253 295 228 275 315 224 266 301
0.005 82.6 91.8 106 85.4 97.9 112 84.2 95.1 107

0.01 55.1 58.4 66.2 55.9 61.6 69.2 55.3 60.0 66.4
0.05 22.3 20.9 21.9 21.8 21.4 22.6 21.6 21.1 21.9

0.1 15.4 13.8 13.8 14.8 13.8 14.1 14.7 13.7 13.8
0.5 6.59 5.50 5.05 6.17 5.36 5.08 6.18 5.38 5.08
1.0 4.62 3.79 3.40 4.30 3.65 3.37 4.31 3.68 3.40
2.0 3.27 2.66 2.33 2.98 2.53 2.26 3.00 2.58 2.30
3.0 2.68 2.13 1.91 2.50 1.99 1.90 2.52 2.01 1.92
4.0 2.32 1.90 1.73 2.01 1.89 1.66 2.04 1.90 1.73

Table 4. Steady-state ARL values of one-sided EWMA, CUSUM and Shiryaev-Roberts (GRSR) procedures under drift. The
schemes are optimized for step changes of size δ. The corresponding λ values are 0.03479, 0.11125, and 0.23052. The smallest
values are boldly written.

There are only slight differences between the three schemes in both the zero-state and steady-state ARL
under drift. EWMA remains, however, a good candidate for detecting also drifts.

4 Conclusions
Generally speaking, the schemes specifically designed for detecting drifts (instead of a step change) are
not really worth the effort. The classical charts as CUSUM, EWMA, and Shiryaev-Roberts for mean
surveillance are sufficiently sensitive to detect also drifts, even small ones. It is open how the ARL of
two-sided CUSUM charts under drift could be numerically calculated. For the Shiryaev-Roberts scheme
it is not clear, how the two-sided chart looks like – there are several ideas to create one. Summarizing,
statistical drift monitoring is just at it’s beginning.
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