
What happens to EWMA control charts when λ converges to zero?

Manuel Cabral Morais1, Yarema Okhrin2, and Wolfgang Schmid3

1 CEMAT & Department of Mathematics, Instituto Superior Técnico,
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Abstract. We provide a brief study on the behaviour of upper one-sided EWMA charts with exact control limits when
its smoothing parameter λ converges to zero, and end up deriving an upper one-sided limit chart which only requires the
use of an overall mean and time-varying control limits in a plot with a similar interpretation and operational aspects to
those of EWMA and Shewhart charts. This limit chart also gives good protection against upward shifts in the process mean
and outperforms several other charts with regard to the ARL and is still competitive when it comes to other performance criteria.
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1 EWMA charts with exact control limits
The exponentially weighted moving average chart (Roberts, 1959) for monitoring shifts in the process
mean µ of i.i.d. output is often based on the statistic

Zt =
{
Z0, t = 0
(1− λ)Zt−1 + λXt, t = 1, 2, . . .

(1)

where: the initial value Z0 is frequently taken to be the target process mean µ0; Xt is an estimator of
µ, usually the sample mean at time t; and λ ∈ (0, 1] is a smoothing parameter that corresponds to the
weight given to the most recent sample. Moreover, we assume that

Xt ∼i.i.d. N (µ = µ0 + a σ, σ2), t = 1, 2, . . . . (2)

If a > 0 then a sustained upward shift in the process mean µ has occurred at time t = 1−; needless to
say, {Xt, t = 1, 2, . . . } is said to be in-control if a = 0, and to be out-of-control otherwise.

Upward shifts can be detected by upper one-sided EWMA charts with exact control limits that give
a signal at the sampling period t if

Zt > Ea=0(Zt) + c
√

Vara=0(Zt) (3)

where: Ea(Zt) = µ0 + a σ
[
1− (1− λ)t

]
; Vara(Zt) = Vara=0(Zt) = λ

2−λ σ
2
[
1− (1− λ)2t

]
; and

c > 0 is a pre-specified critical value that defines the range of the (time-varying) exact control limits.
We rely on the run length (RL),

Na = inf{t : Zt > E0(Zt) + c
√

Var0(Zt)}, (4)

to assess the performance of upper one-sided EWMA charts with exact control limits. The properties of
this performance measure not only depend on the magnitude of the shift a, but also on λ and c, therefore
it is going to be represented by Na(λ, c). According to Morais et al. (2008), its survival function can be
written in terms of the c.d.f. of multivariate normal random vectors:

P [Na(λ, c) > k] = FNk(0k,Ck(λ))(c− a× g(λ, i), i = 1, . . . , k), k = 1, 2, . . . , (5)
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where: 0k is a column vector with k zeroes; Ck(λ) is a correlation matrix with entries

Corr0(Zi, Zj) = (1− λ)j−i
√

[1− (1− λ)2i]/[1− (1− λ)2j ], 1 ≤ i ≤ j ≤ k; (6)

and
g(λ, i) =

√
(2− λ)× [1− (1− λ)i]/{λ× [1 + (1− λ)i]}. (7)

Unsurprisingly, problems arise when we try to obtain the ARL of this chart,

E[Na(λ, c)] = 1 +
+∞∑
k=1

P [Na(λ, c) > k], (8)

and have to depend on simulation to approximate this quantity.

2 On the stochastic monotone behaviour of the in-control run length
Even though we have to rely on simulation to obtain E[Na(λ, c)], in the absence of assignable causes
(a = 0), we can state an important result concerning the in-control RL of all upper one-sided EWMA
control charts with exact control limits and sharing the same critical value c; let us designate this family
of control charts by F(c).

If we assume that Xt ∼i.i.d. N (µ = µ0, σ
2), t = 1, 2, . . . , then

P [N0(λ1, c) > k] ≥ P [N0(λ2, c) > k], k = 1, 2, . . . , 0 < λ1 ≤ λ2 ≤ 1, (9)

i.e., N0(λ, c) stochastically decreases with λ in the usual sense. (See Chapter 1 of Shaked and Shan-
thikumar (1994) for this and other notions of stochastic ordering.)

The stochastic ordering result (9), proved by Morais et al. (2008), leads to several conclusions,
namely that the in-control RL of the upper one-sided Shewhart control chart, N0(λ = 1, c), is the
smallest in-control RL within F(c), stochastically speaking.

3 Choosing the critical value. Out-of-control run length
In order to compare control charts the critical value c is usually chosen so that the in-control ARL is
equal to a pre-specified value ξ > 1, that is, c is the solution of the equation E[N0(λ, c)] = ξ. Thus, the
critical value is a function of λ and ξ, say c(λ, ξ).

Since we rely on simulation to evaluate the ARL of the upper one-sided EWMA charts with exact
control limits and on a numerical search for c(λ, ξ), it is essential to characterize the critical value namely
as a function of λ.

By capitalizing on the previous stochastic ordering result, Morais et al. (2008) managed to prove that
if we assume once again that the Xt ∼i.i.d. N (µ = µ0, σ

2), t = 1, 2, . . . , and consider a fixed ξ > 1,
then the critical value c(λ, ξ) is an increasing function in λ ∈ (0, 1].

This behaviour can be interpreted as follows: increasing the weight on the latest observation requires
a larger critical value to attain the same in-control ARL.

By relying on the regula falsi method to find the root c(λ, ξ), setting ξ = 500 samples, simulating
the in-control process from a normal distribution with zero mean and unit variance and considering the
number of replications equal to 107, we got the critical values c(λ, ξ = 500), for different values of the
smoothing parameter λ = 10−i, i = 0, 1, . . . , 4, and also the out-control ARL values for all these values
of λ and several magnitude of the shift a = 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0.

Please note that in any case the convergence criteria for the critical values is a relative error between
the simulated in-control ARL and ξ = 500 smaller than 0.2%. Moreover, any simulated RL is truncated
if it is larger than 50000 samples. Also worthy of note is the fact that the ARL values of the upper
one-sided Shewhart chart (λ = 1) were not obtained by simulation since there is a closed expression for
them: E[Na(1, c(1, ξ))] = 1

1−Φ(c(1,ξ)−a) , where c(1, ξ) = Φ−1(1− 1/ξ).
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Table 1. Critical values, in-control and out-of-control ARLs for upper one-sided EWMA charts with exact control limits and
different smoothing parameters λ.

a
λ c(λ, 500) 0 0.25 0.5 1.0 1.5 2.0 3.0 4.0
0.0001 0.346840 501.147487 5.433230 2.624336 1.459113 1.159824 1.054080 1.004007 1.000131
0.001 0.829928 499.611751 11.231302 4.428709 1.965261 1.364700 1.141339 1.015279 1.000776
0.01 1.654164 500.517635 30.814533 10.546469 3.651299 2.097137 1.502536 1.093122 1.009534
0.1 2.543225 499.745389 66.944150 21.634646 6.760731 3.539827 2.303960 1.367106 1.073346
1 2.878162 500.000000 232.970748 114.947864 33.135052 11.893905 5.265154 1.823199 1.150702

The simulation results in Table 1, not only illustrates the increasing behaviour of c(λ, ξ) in λ, but
also allows us to state that the upper one-sided Shewhart chart has the largest out-of-control ARL within
the class of matched in-control EWMA charts.

These results, the additional ones in Morais et al. (2008), Figure 1 of Frisén and Sonesson (2006)
and Figure 1 below suggest that λ should approach to zero to minimize the out-of-control ARL (for a
fixed in-control ARL), regardless of the magnitude of the shift.
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Fig. 1. Out-of-control ARL of matched in-control upper one-sided EWMA charts with exact control limits as a function of λ.

This by no means contradicts a well-known fact concerning EWMA charts with asymptotic control
limits: Shewhart charts are faster than their matched in-control EWMA counterparts with asymptotic
control limits when it comes to the detection of large shifts in the process mean (Lucas and Saccucci,
1990).

In the next section we present the upper one-sided limit chart, derived from the limiting distribution
of Na(λ, c) as λ tends to 0+. To obtain this limiting distribution it suffices to evaluate

Ck(0) = lim
λ→0+

Ck(λ) =

[√
min{i, j}
max{i, j}

]
i,j=1,...,k

(10)

and limλ→0+ g(λ, i) =
√
i.

4 The limit chart and its performance
The upper one-sided limit chart makes use of the overall mean at sample time t, X̄t = 1

t

∑t
i=1Xi, and

its RL,

Na(0, c) = inf{t ∈ IN : X̄t > E0(X̄t) + c
√

Var0(X̄t) = µ0 + cσ/
√
t}, (11)

has survival function defined by

lim
λ→0+

P [Na(λ, c) > k] = FNk(0k,Ck(0))

(
c− a

√
i, i = 1, ..., k

)
, k = 1, 2, . . . . (12)

Interestingly enough, this chart can be related to other ones.

1. Since X̄t = (1 − 1
t )X̄t−1 + 1

tXt, the upper one-sided limit chart can be interpreted as an upper
one-sided EWMA chart with time-varying smoothing parameters λt = 1

t and exact control limits
µ0 + cσ/

√
t.
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2. Using 1√
t

∑t
i=1(Xi − µ0) instead of X̄t, leads to a sort of an upper one-sided CUSUM chart with a

conveniently constant UCL, cσ.
3. Moreover, the upper one-sided limit chart is simpler than the generalized EWMA scheme pro-

posed by Han and Tsung (2004) which uses a dimension-varying control statistic at time t and
requires running a family of t EWMA charts at time point t, with smoothing parameters from the set
{1, 1/2, 1/3, . . . , 1/t}.

Now, it is time to assess how the (A) upper one-sided limit chart with c(0, 500) = 0.164547 com-
pares to the following competing charts:

(B) upper one-sided EWMA chart with exact control limits, λ = 0.1 and c(0.1, 500) = 2.543225;
(C) upper one-sided EWMA chart with asymptotic control limits, λ = 0.1 and c = 2.532760;
(D) upper one-sided Shewhart chart, c(1, 500) = 2.878144;
(E) upper one-sided version of the generalized EWMA scheme (Han and Tsung, 2004), c(HT ) =
3.10.

Table 2. In-control and out-of-control ARL of the upper one-sided limit chart (A) and four other matched in-control competing
charts (B–E).

a
Chart 0 0.25 0.5 1.0 1.5 2.0 3.0 4.0

A 499.520451 4.137894 2.188909 1.335961 1.112503 1.035934 1.002312 1.000064
B 499.745389 66.944150 21.634646 6.760731 3.539827 2.303960 1.367106 1.073346
C 500.289922 70.360046 24.726256 8.907849 5.389757 3.915183 2.604415 2.057725
D 500.000000 232.970748 114.947864 33.135052 11.893905 5.265154 1.823199 1.150702
E 499.3750 86.2551 29.5563 9.4000 4.8581 3.1067 1.7067 1.1909

From the results in Table 2 it is apparent that the upper one-sided limit chart outperforms all four
other matched in-control charts.

This table certainly supports the well known fact that Shewhart charts are faster than the EWMA
charts with asymptotic limits in the detection of very large shifts. However, when we compare their
ARL values with the ones of the upper one-sided EWMA with exact control limits (B) or of the upper
one-sided limit chart (A), we immediately recommend abandoning both the upper one-sided Shewhart
chart (D) and the upper one-sided EWMA chart with asymptotic limits (C).

5 Further investigations
5.1 On the in-control behaviour of the limit chart
A close inspection of the simulated values of the in-control RL of the upper one-sided limit chart made
us realize that the probability of a false alarm at the first sample is very high. In fact, it is equal to

P0[X̄1 = X1 > µ0 + c(0, ξ)σ] = 1− Φ[c(0, ξ)]; (13)

and since the critical value c(0, ξ) is a small positive constant this probability is large, and the number
of false alarms at sample 1 is higher than the one of the competing charts even though they are matched
in-control.

The impact of this undesired property can be reasonably minimized by adding a negative head start
value, say HS−, to X1, therefore the control statistic now reads as

X̄−t =
HS−

t
+

1
t

t∑
i=1

Xi. (14)

HS− should chosen in order to achieve a reasonably small value for the probability in (13). For instance,
the probability of triggering a false alarm at the first sample while using the upper one-sided limit chart
could be taken as equal to the one of the upper one-sided Shewhart chart and therefore

HS− = HS−(1/ξ) = c(0, ξ)− Φ−1(1− 1/ξ). (15)
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As a matter of fact, there is a stochastic increase of RL and, thus, larger in-control and out-of-control
ARL values, and we are no longer dealing with matched in-control charts, as illustrated by Table 3 for
the upper one-sided limit charts with critical value c(0, ξ = 500) = 0.164547 and

(A1) HS−(1/ξ) = c(0, ξ)− Φ−1(1− 1/ξ) ' −2.7
(A2) HS−(2/ξ) = c(0, ξ)− Φ−1(1− 2/ξ) ' −2.5.

Table 3. Percentage of simulated in-control RL equal to one, in-control and out-of-control ARL of the upper one-sided limit
charts A, A1 and A2, and the competing charts B–E.

a
Chart % of ones 0 0.05 0.1 0.15 0.2 0.25

A 0.434671 500.670590 22.616663 10.637120 6.920705 5.172090 4.133596
A1 0.002036 1933.249760 89.002448 41.717421 26.990211 19.911457 15.719583
A2 0.003826 1831.702782 83.899498 39.431086 25.524654 18.763227 14.861847
B 0.005457 500.303351 304.815952 195.265144 130.820231 91.864101 66.963427
C 0.000000 500.289922 307.293711 198.801400 134.479182 95.442338 70.429621
D 0.002000 500.000000 427.203031 365.848755 314.029065 270.170007 232.970748
E 0.000968 495.640 347.150 239.748 161.997 117.394 86.708

However, the upper one-sided limit charts with these two head starts (A1–A2) can still outperform the
competing ones (B–F) in the detection of very small shifts (e.g. a = 0.05, 0.1, 0.15, 0.2), as shown by
Table 3. Moreover, the adoption of head starts HS−(1/ξ) and HS−(2/ξ) substantially decreased the
percentage of simulated in-control RL values equal to one of the upper one-sided limit chart, as we can
see from Table 3.

5.2 The (maximum) conditional average delay
Up to now we have assumed that the shift occurs at time t = 1− and this can be unrealistic. So we
ought to investigate the performance of both the upper one-sided EWMA with exact control limits and
the upper one-sided limit chart when the shift occurs at an arbitrary time, say q− (q ≥ 1). In order to do
that, let us consider that

Xt ∼i.i.d.
{
N (µ = µ0, σ

2), t < q
N (µ = µ0 + a σ, σ2), t ≥ q, (16)

where q ≥ 1 and is usually called the change point.
Under (16) the ARL is no longer an adequate chart performance. If fact, the essential tools in the

comparison of the performances of several competing charts under the distributional assumption (16)
are the conditional average delay

CADa(q, λ, c) = E[Na(λ, c)− q + 1|Na(λ, c) ≥ q], (17)

which corresponds to the number of observations until the detection of a shift of magnitude a, con-
ditionally on the fact that it occurred at time q− (see, for example, Knoth (2003)), and the maximum
conditional average delay,

MCADa(λ, c) = max
q=1,2,...

CADa(q, λ, c). (18)

We summarize some MCAD values in Table 4. These values refer to the charts A–D defined previ-
ously. (Scheme E was not included in this last simulation study because it was computationally unfeasi-
ble.)

It is apparent from Table 4 that the MCAD performance criterion favours the upper one-sided limit
chart for small shifts, the upper one-sided CUSUM chart for moderate shifts and the upper one-sided
Shewhart chart for large shifts.

Adding to this, charts A, A1 and A2 have very similar out-of-control performances regarding
MCAD, suggesting that the adoption of the negative head starts HS−(1/ξ) and HS−(2/ξ) has a negli-
gible effect on the out-control situation of the upper one-sided limit chart.
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Table 4. Maximum conditional average delays of the upper one-sided limit chart (A) and other competing charts (A1, A2,
B–D).

a
Chart 0.25 0.5 1.0 1.5 2.0 3.0 4.0

A 53.73451 26.74354 13.41873 9.06882 6.86498 6.70867 3.64195
A1 54.884611 27.201756 13.680594 9.218782 7.000753 4.802976 3.717786
A2 54.819058 27.129930 13.663792 9.194612 6.983917 6.983917 3.708094
B 70.52657 24.17937 8.90591 5.40826 3.94658 2.64587 2.05344
C 69.91940 24.15317 8.85420 5.39099 3.93217 2.63550 2.04735
D 232.97075 114.94786 33.13505 11.89391 5.26515 1.82320 1.15070

6 Conclusions

This paper essentially provides a study on the behaviour of the upper one-sided EWMA chart with exact
control limits when the smoothing parameter λ converges to zero. Nevertheless, we ought to note that
the resulting chart — the upper one-sided limit chart — combines two properties:

Simplicity — It requires only the use of an overall mean and time-varying control limits in a plot
with a similar interpretation and operational aspects to those of EWMA and Shewhart charts.
Efficiency — It gives good protection against upward shifts in the process mean and outperforms
several other charts with regard to the ARL and is still competitive when it comes to other perfor-
mance criteria like the maximum conditional average delay.

On the downside, the upper one-sided limit chart triggers false alarms quite frequently in the first sam-
ples. However, the use of negative head starts dramatically improves the in-control behaviour and still
provides good out-control ARL performance.
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