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Abstract. In this presentation we will give a survey of some recently proposed algorithms that can be used in sequential
testing or in sequential monitoring for the presence of a change in some parameters of the process. The underlying theory for
weakly dependent time series will be referenced and some empirical results will show the power of these new procedures.
Sequential tests under consideration are the continuous versions of the Pocock (1977) and O’Brien and Fleming (1979) type
group sequential tests. The sequential monitoring strategy uses a version of Page’s (1955) idea. These tests specify a maximal
sample size, and are based on type I error considerations.
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1 Introduction and results

Structural stability of observations over time is one of the most important topics in statistics, environ-
mental studies, and econometrics. In this talk we shall define sequential tests and sequential change
detection algorithms for various parameters of weakly dependent time series.

Retrospective change detection tests were defined in Gombay (2008) for autoregressive models, and
in Gombay and Horváth (2009) for more general models. Sequential change detection algorithms for
the autoregressive model were given in Gombay and Serban (2005, 2008), and in Gombay and Horváth
(2009) for linear processes.

Sequential tests and sequential change detection algorithms are closely related. In sequential tests
the change is at the first observation, so it is a special case of change detection tests, where change in an
initial value can happen at any time. Hence, the underlying theory is similar for the two problems. It is
described in the following theorem.

Let observations {Yt, t ≥ 1} be defined as

Yt =
∞∑

i=0

αiεt−i,
∞∑

i=1

i|αi| < ∞, (1)

where {εi} is a sequence of i.i.d.r.v.’s, {αi} is a sequence of constants. We need large sample approxi-
mations for the following partial sum sequences that arise in our tests:

t∑

k=1

Yk, t ≥ 1, (2)

t∑

k=1

(YkYk−s −E(YkYk−s)), t ≥ 1, for s ≥ 0 fixed. (3)

Theorem 1.1: Let {Yk} be a linear process as in (1), assume that for the i.i.d. sequence {εk} we have
E(εk) = 0, V ar(εk) = σ2, 0 < σ2 < ∞, and E|εk|κ < ∞.

(i) If κ > 2, then there exists a Brownian motion {W (t), t ≥ 0}, such that

|
[t]∑

k=1

Yk − σ1W (t)| = o(t1/ν), a.s



2 Gombay

for some σ1 > 0 and some ν > 2.
(ii) If κ > 4, then there exists a Brownian motion {W (t), t ≥ 0}, such that

|
[t]∑

k=1

(YkYk−s −E(YkYk−s))− σ2W (t)| = o(t1/ν), a.s

for some σ2 > 0 and some ν > 2, where 0 ≤ s is fixed.

Note, that the rates of approximation in the above theorem are the best possible, they are the same as
in case of sums of independent identically distributed random variables. Based on this theorem we can
define several sequential tests and sequential change detection algorithms. In both problems the initial
value is given, the algorithms monitor the process up to a maximum sample size. The probability of
type I error is under control, which is a new feature, as many classical sequential tests were designed
so that the stopping time be minimized. The analysis of the new tests in case of i.i.d. observations was
given in Gombay (2003), and their properties carry over to the dependent case by virtue of the invariance
principle.

The following tests can be used in general for any situation where the test statistic can be approxi-
mated by a Brownian motion with the rate of error as in Theorem 1.1. For the practical implementation
of these strategies one has to make sure, that the standardizing constant σ2

i , i = 1, 2, can be estimated
with precision that will not change the asymptotic distribution.

Let n denote the maximum sample size, or truncation point, and α the level of significance. Recall
that observation y1, y2, . . . , are arriving one by one, so at stage k we have observed y1, . . . , yk. First we
list the sequential tests.

2 Sequential Tests

Assume, that observations in (1) are including a constant term, that is,

Yt(µ) = µ +
∞∑

i=0

αiεt−i,
∞∑

i=1

i|αi| < ∞. (4)

To test sequentially if given value µ0 = E(Yt) is the true mean, define Stat(k) = k−1/2
∑k

i=1(yi−
µ0), and define with a suitable standardizing estimator σ̂1,k the following procedure.

TEST 1. If for some k > 1
σ̂−1

1,k |Stat(k)| ≥ CV1(α, n),

then stop and reject the null hypothesis. If σ̂−1
1,k |Stat(k)| < CV1(α, n) for all k ≤ n, then no evidence

against the null hypothesis has been found.
Critical value CV1(α, n) can be approximated by the results of Vostrikova (1981) for each n. These

approximations are based on the boundary crossing probabilities of Ornstein-Uhlenbeck processes and
give less conservative critical values for finite n than the limiting double exponential distribution, as
convergence for extremal values is known to be very slow. The one-dimensional approximation in
Vostrikova (1981) with T = log n is

P{ sup
1<k≤n

|σ̂−1
1,k |Stat(k)| > y} ∼= exp(−y2/2)y√

2π

{
T (1− 1

y2
) +

4
y2

+ O(
1
y4

)
}

;

therefore, CV1(α, n) can be obtained from this equation.
If a sequential test for the value of E(YkYk−s) = γ0(s), s ≥ 0 is needed, then we replace Stat(k)

above by Stat(k) = k−1/2
∑k

i=1(yiyi−s − γ0(s)), and replace σ̂1,k with an appropriate estimator σ̂2,k,
and perform the thus modified TEST 1. The proper choice of σ̂1,k and σ̂2,k is crucial for the performance
of this test. Berkes et al. (2009) have proposed estimators with small enough errors rates.
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TEST 1 is the continuous monitoring version of Pocock’s (1977) group-sequential tests, hence it has
its advantages of early stopping for large differences between the null-value and the true value of the
parameter of interest. The continuous version of O’Brien and Fleming’s (1979) group-sequential test
requires different standardizing constants. Let Stat(1)(k) = n−1/2

∑k
i=1(yi − µ0), or Stat(2)(k) =

n−1/2
∑k

i=1(yiyi−s − γ0(s)), depending on the parameter of interest. Then for i = 1, 2 we have the
following procedure.

TEST 2. If for some k, 1 < k ≤ n,

σ̂−1
ik |Stat(i)(k)| ≥ CV2(α, n),

then stop and reject the null hypothesis. Otherwise no evidence against the null hypothesis has been
found.

Critical value CV2(α, n) = CV2(α) is obtained from the well-known distribution of
sup0<t<1 |W (t)|. Note, that it does not depend on n. One-sided versions of these tests can be defined
with the appropriate modification of the critical values.

TEST 2 has more sensitivity for small differences between the null and alternative values of the
parameters. Hence, the choice between TEST 1 and TEST 2 are made on the same principles as the
choice between the Pocock and O’Brien-Fleming tests. More details on the stopping characteristics of
the above two testing strategies can be found in Gombay (2002).

Open ended tests, that is sequential tests without a maximal sample size n can be defined using
boundary crossing probabilities for the Brownian motion. Such are readily available, see Gombay (2003)
for some suggestions and references.

3 Sequential Change Detection

The following two tests use the CUSUM idea of Page (1955) for sequential change detection. When the
interest is in the mean of the process we use the following test statistic,

Stat(k) = σ̂−1
1k

√
k

n

k∑

i=1

(Yi −E0(Yi).

TEST 3. Stop and conclude that the null hypothesis of no change is not supported by the data at the first
k, 1 < k ≤ n, when

max
1<j<k

n−1/2
(
Stat(k)− Stat(j)

) ≥ CV3(α),

otherwise do not reject H0.

The critical value CV3(α) = CV3(α, n), all n, can be obtained from the well known distribution of
sup0≤s<t≤1(W (t) −W (s)) which is the same as the distribution of sup0≤t≤1 |W (t)|, where W (·) is a
standard Brownian motion. For example, C(0.10)=1.96, C(0.05)=2.24 and C(0.01)=2.80.

When the interest is in change in the autocovariance at lag s, s ≥ 0, then let

Stat(k) = σ̂−1
2k

k∑

i=1

(YiYi−s − E0(YiYi−s))

and use test the following testing procedure.

TEST 4. Stop and conclude that the null hypothesis of no change is not supported by the data at the first
k, 1 < k ≤ n, when

max
1<j<k

n−1/2
(
Stat(k)− Stat(j)

) ≥ CV3(α),



4 Gombay

otherwise do not reject H0.

The greatest difficulty in implementing these tests is in the estimation of the standardizing constants
σ1k and σ2k. Different aspects of these difficulties were discussed and solved in Berkes et al. (2009).

In Berkes et al. (2009), the use of moving average process approximations were advocated, and they
were shown to work well in the retrospective change detection scenario. Earlier, in most works stan-
dardization based on approximating the process by autoregressive time series was suggested. It has been
remarked in the econometric literature by several authors, that the moving average processes would be
more natural, better suited to model many phenomena. However, mathematical convenience associated
with an autoregressive model makes it widely applicable. This convenience is due to the existence of the
likelihood function (or semi-likelihood, in case of non-normal errors), that leads, among other things, to
explicit maximum likelihood estimators.

Moving average processes have m-dependent observations, and for those the strong law of large
numbers (and the central limit theorem) can easily be proven. These theorems allow the definition of
simple estimators for the standardizing constants. The estimator for σ1k is the empirical variance of∑k

i=1(Yi − E0(Yi)), and it turns out to be the same as the Bartlett estimator with uniform kernel. In
the estimation of σ2k, we extend this approach to higher moments. Also, by this method we can get an
estimator for the covariance matrix, that is useful for simultaneous testing of several parameters.

Example: MA(1) process is Yt = εt + θεt−1, so q = 1 and the covariance function of the process is
γ(0) = σ2

ε (1 + θ2), γ(1) = θσ2
ε , and γ(h) = 0 for |h| > 1. The covariance matrix Γ2×2 is estimated by

Γ̂ with components

Γ̂00 =
k∑

j=1

Y 4
j + 2

k∑

j=1

Y 2
j Y 2

j+1 − 3
1
k




k∑

j=1

Y 2
j




2

,

Γ̂11 =
k∑

j=1

Y 2
j Y 2

j−1+

+2





k∑

j=1

Y 2
j Yj−1Yj+1 +

k∑

j=1

YjYj−1Yj+1Yj+2



− 5

1
k




k∑

j=1

YjYj−1




2

,

and

Γ̂01 = Γ̂10 =
k∑

j=1

Y 3
j Yj−1 +

k∑

j=1

Y 3
j Yj+1

+
k∑

j=1

Y 2
j Yj+1Yj+2 +

k∑

j=1

Y 2
j Yj−1Yj−2 − 4

k




k∑

j=1

YjYj−1







k∑

j=1

Y 2
j


 .

When the process is AR(p), then we have closed form (quasi-)maximum likelihood estimators that
converge to the unknown parameters at an optimum rate. This allows us to define the following tests.

3.1 Monitoring the mean µ.

We test the hypothesis of no change H0 : µi = µ0, σ2 and φ unknown, for all i ≥ 1, against the
alternative

HA : µi = µ0, σ2 and φ unknown for all 1 ≤ i ≤ τ − 1

µi = µA, σ2 and φ unknown, unchanged for all i ≥ τ.
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The test statistic is based on maxj<k[Wk(µ0, σ̂
2
k, φ̂k)−Wj(µ0, σ̂

2
k, φ̂k)], where

Wk(µ0, σ̂
2
k, φ̂k) =

1
σ̂k

k∑

i=1

[
(Yi − µ0)−

p∑

j=1

φ̂kj(Yi−j − µ0)
]
.

Simulations results are shown in Figure 1. It contains eleven lines, each for a different size of change in
mean denoted as m = µA−µ0. Each of these lines shows the power achieved as the coefficient φ varies
between -0.9 and 0.9. Note that, for fixed truncation point and fixed change-point, the power of the test
decreases as the coefficient φ increases from -1 to 1. This can be seen in Figure 1 and it happens because
the drift D is proportional to (1− φ).

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
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0.8

1.0
m=0
m=0.1
m=0.2
m=0.3
m=0.4
m=0.5
m=0.6
m=0.7
m=0.8
m=0.9
m=1
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o
w
e
r

Fig. 1. Power vs Coefficient when testing change in the mean. The truncation point is n0 = 200 and the change point is
τ = 100. The in-control value is µ0 = 0 and the change in mean is m = µA − µ0.

3.2 Monitoring the variance σ2.

When monitoring the variance σ2, the mean µ and φ are nuisance parameters. The hypothesis of interest
is H0 : σ2

i = σ2
0, µ and φ unknown for all i ≥ 1, and the alternative

HA : σ2
i = σ2

0, µ and φ unknown for all 1 ≤ i ≤ τ − 1

σ2
i = σ2

A, µ and φ unknown, unchanged for all i ≥ τ.

The test statistic is based on maxj<k[Wk(σ2
0, µ̂k, φ̂k)−Wj(σ2

0, µ̂k, φ̂k)], where

Wk(σ2
0, µ̂k, φ̂k) = 2−1/2σ−2

0

k∑

i=1

{[
(Yi − µ̂k)−

p∑

j=1

φ̂kj(Yi−j − µ̂k)
]2

− σ2
0

}
.

From simulations studies unreported here one can see that for fixed truncation point and fixed change
point, the power of the test remains almost the same for any coefficient φ between -1 and 1.
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3.3 Monitoring the coefficient φ.
In this case we test H0 : φi = φ0 , µ and σ2 unknown for all i ≥ 1, against the alternative

HA :φi = φ0 , µ and σ2 unknown, for all 1 ≤ i ≤ τ − 1

φi = φA , µ and σ2 unknown, unchanged for all i ≥ τ

The test statistic is based on vector maxj<k[Wk(φ0, µ̂k, σ̂
2
k)−Wj(φ0, µ̂k, σ̂

2
k)],

Wk(φ0, µ̂k, σ̂
2
k) =

1
σ̂k

Γ−1/2(φ0, µ̂kσ̂
2
k)∇φl(φ0, µ̂k, σ̂

2
k),

where Γ is the information matrix, and l(φ0, µ̂k, σ̂) is the log-likelihood function with estimated nui-
sance parameters µ and σ2. The five lines of Figure 2 present the empirical power of the test when the
initial in-control value of φ0 is b = -0.9, -0.5, 0, 0.5, and 0.9, respectively. The value of φ after change
is on the horizontal axis.

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
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Fig. 2. Power curves when testing for change in the coefficient for different AR(1) models (b = φ0). The truncation point is
n0 = 200 and the change point is τ = 100. The initial coefficient values are b =-0.9, -0.5, 0.0, 0.5 and 0.9.
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Gombay, E., and Horváth, L. (2009). Sequential tests and change detection in the covariance structure of weakly stationary

time series. S. Zacks Festschrift of Communications in Statistics - Theory & Methods, to appear.
Gombay, E., and Serban, D. (2005). Monitoring Parameter Change in AR(p) Time Series Models. Technical Report 05.04

Statistics Centre, University of Alberta, Edmonton, Canada.
Gombay, E., and Serban, D. (2009). Monitoring Parameter Change in AR(p) Time Series Models. Journal of Multivariate

Analysis, 100 715-725.
O’Brien, P. C. and Fleming, T. R. (1979). A multiple testing procedure for clinical trials, Biometrics, 35 549–556.
Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point. Biometrika, 42 523–527.
Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. J. , Biometrika, 64 191–199.
Vostrikova, L. J. (1981). Detection of a ’disorder’ in a Wiener process, Theory Probability and its Applications, 26 356–362.


