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Abstract. Instead of the standard approach in change-point theory to perform the statistical analysis based on a sample of fixed
size, we have, in a series of papers—Gut and Steinebach (2002, 2004, 2005, 2009)—introduced some (truncated) sequential
testing procedures for detecting a possible change-point in a sequence of renewal counting data (based on random walks). The
main focus of the present paper is on “detection of an early change” and on EWMA charts.
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1 Introduction
The standard situation in a series of observations is that if everything is in order, then the observations
follow some kind of common pattern, whereas if something goes astray at some time point, then, from
there on, the observations follow a different pattern. One obviously wishes to find out as soon as possible
if something goes wrong in order to take appropriate action, and, at the same time, minimize the prob-
ability of taking action if nothing is wrong. In this setting one talks about, what is called, the AMOC
problem (At Most One Change), which was introduced by Page in the mid-1950’s in the context of
quality control/control charts.

The classical approach in change-point theory is to perform the statistical analysis based on a sample
of fixed size.

Alternatively, and perhaps, more realistically, one cannot, for a variety of reasons, observe the pro-
cess under consideration continuously, only at, say, equidistant time points, such as once a day, once a
week, and so on. In Gut and Steinebach (2002) we suggested some truncated sequential monitoring pro-
cedures for detecting a structural break, that is, a “change-point” k∗n, in a series of counting data, e.g., the
number of claims of an insurance portfolio, which are sequentially observed at equidistant time-points
up to a “truncation point” n (say), thus yielding a “closed-end” procedure. Technically, this amounts to
constructing a sequential test for, say,

H0 : k∗n = n (“no change”)

vs. the two-sided alternative

H1 : 1 ≤ k∗n < n, θ∗ 6= θ (“change in the drift at k∗n”),

based on the observed counting data N(0), N(1), . . . , N(n), where θ and θ∗ denote the drifts before
and after the change, respectively.

Some limiting extreme value asymptotics (as n →∞) could be derived in the cited paper under the
null hypothesis of “no change”, via a strong invariance principle (Proposition 1 below), thus allowing
for a choice of critical boundaries in the monitoring schemes in order for the false alarm rate (asymptot-
ically) to attain a prescribed level α. Moreover, some limiting properties under the alternative could also
be proved showing that the statistical procedures have asymptotic power 1.

In our more recent work, Gut and Steinebach (2009), we look in more detail into the behaviour of the
relevant stopping times, in particular the time it takes from the (unknown) change-point until one detects
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that a change actually has occurred, in other words, asymptotics for stopping times under alternatives
are proved.

A review of our results so far will be given in Sections 3 and 4 below.
Another generalization is to consider the problem of more than one change-point. A special case of

interest is the so-called epidemic change, for which we refer to Gut and Steinebach (2005).
A problem of a slightly different nature is to allow for some kind of discount, a special case of

which are the so-called EWMA (exponentially weighted moving average) charts. A survey of some of
the results from Gut and Steinebach (2004) is given in Section 5.

2 An invariance principle for renewal processes
As mentioned in the introduction, a crucial tool in the proofs is the following strong invariance prin-
ciple (Gut and Steinebach (2002), Proposition 1), which allows our renewal counting processes to be
approximated by Brownian motions.

Consider a renewal counting process that is based on an i.i.d. sequence X1, X2, . . ., up to (say)
time k∗n, and then on another i.i.d. sequence X∗

1 , X∗
2 , . . ., independent of the first one. Suppose that

E X = µ > 0, that E X∗ = µ∗ > 0, and, further, that the variances σ2, σ2∗ are positive and finite. Let

N(t) =

{
N0(t), for 0 ≤ t ≤ k∗n,

N0(k∗n) + N1(t− k∗n), for k∗n < t ≤ n,

where

N0(t) = min{k ≥ 1 :
k∑

j=1

Xj > t} , N1(t) = min{k ≥ 1 :
k∑

j=1

X∗
j > t} , t ≥ 0.

Proposition 1. Suppose that E|X1|r < ∞ and E|X∗
1 |r < ∞ for some r > 2. Then

sup
0≤t≤n

|N(t)− V (t)| a.s.= o(n1/r) as n →∞,

where

V (t) =

{
tθ + ηW0(t), for 0 ≤ t ≤ k∗n,

V (k∗n) + (t− k∗n)θ∗ + η∗W1(t− k∗n), for k∗n < t ≤ n,

with θ = 1/µ, η2 = σ2/µ3, θ∗ = 1/µ∗, η∗ = σ∗2/µ∗3, and two independent (standard) Wiener
processes {Wi(t), t ≥ 0}, i = 1, 2.

Remark 1. The inspiration for the proposition was the strong invariance principle for renewal processes
due to Csörgő et al. (1987).

Remark 2. Since our results are based on the strong invariance principle above, we tacitly assume
throughout in the following that the conditions required for the application of Proposition 1 are fulfilled.

Remark 3. In most cases a weak invariance principle, which, in turn, is available for wider classes of
stochastic processes, would be sufficient (cf. Horváth and Steinebach (2000), Section 1).

3 Null asymptotics
From the sequential observations N(0), N(1), . . . , N(n), we compute the random variables

Yk = Yk,n =
N(k)−N(k − hn)− hnθ

η
√

hn
, k = hn, . . . , n,

Zk = Zk,n =
N(k)− kθ

η
√

k
, k = kn, . . . , n,
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and the stopping times

τ (1)
n = min{hn ≤ k ≤ n : |Yk| > c(1)

n },

τ (2)
n = min{kn ≤ k ≤ n : |Zk| > c(2)

n }

(min ∅ := +∞), where c
(1)
n , c

(2)
n are suitable critical values and hn, kn are the lengths of the respective

“training periods”.

Remark 4. For the sake of simplicity, we assume that the “in-control” parameters θ, η are known, but
they can also be replaced by “suitable” sequential estimates (see Gut and Steinebach (2002), Section 5).

The critical values c
(1)
n , c

(2)
n are chosen such that the false alarm rates (asymptotically) attain a prescribed

level α, i.e.,

PH0(τ
(1)
n < ∞) = PH0

(
max

hn≤k≤n
|Yk| > c(1)

n

)
≈ α, and

PH0(τ
(2)
n < ∞) = PH0

(
max

kn≤k≤n
|Zk| > c(2)

n

)
≈ α,

which can be achieved via the following extreme value asymptotics from Gut and Steinebach (2002),
Section 4:

Theorem 1. If hn � n, but
√

hn � n1/r, then, with normalizations

a(1)
n =

√
2 log(n/hn) and b(1)

n = 2 log(n/hn) +
1
2

log log(n/hn)− 1
2

log π ,

we have, under H0,

a(1)
n max

hn≤k≤n
|Yk| − b(1)

n
d−→ E as n →∞,

where P (E ≤ x) = exp(−2e−x), x ∈ R, that is, the critical value c
(1)
n can (asymptotically) be chosen

as

c(1)
n =

E1−α + b
(1)
n

a
(1)
n

(
∼

√
2 log(n/hn)

)
,

where E1−α denotes the (1− α)-quantile of the (two-sided) Gumbel distribution.

Theorem 2. If kn � n, but
√

kn � n1/r, then, with normalizations

a(2)
n =

√
2 log log(n/kn) and b(2)

n = 2 log log(n/kn) +
1
2

log log log(n/kn)− 1
2

log(4π) ,

we have, under H0,

a(2)
n max

kn≤k≤n
|Zk| − b(2)

n
d−→ E as n →∞,

that is, the critical value c
(2)
n can (asymptotically) be chosen as

c(2)
n =

E1−α + b
(2)
n

a
(2)
n

(
∼

√
2 log log(n/kn)

)
,

with E1−α as in Theorem 1.

An obvious question of interest would be how quickly a possible change-point k∗n can be detected by
the monitoring procedure, that is, what can be said about the behaviour of the stopping times τ

(1)
n , τ

(2)
n or

the detection delays τ
(1)
n − k∗n, τ

(2)
n − k∗n under the alternative H1? This is the topic of the next section,

in which it will turn out that the asymptotic behaviour of the stopping times, suitably normalized, is
normal.
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4 Asymptotics under an early-change alternative
Similar to Aue et al. (2008), we consider an “early change” scenario here, that is, we assume that the
change-point k∗n does not occur too late compared to the length of the training period in the following
technical sense:

k∗n = O
(
hn logγ(n/hn)

)
as n →∞ (for some γ > 0). (1)

Then we have the following asymptotic normality (see Gut and Steinebach (2009), Section 5):

Theorem 3. Assume that (1) holds. If {hn} is as in Theorem 1, then, under H1,

τ
(1)
n − k∗n
η

|θ∗−θ|
√

hn
− c(1)

n
d−→ N(0, 1) as n →∞.

Remark 5. It is obvious from the proof that

PH1(τ
(1)
n ≥ k∗n) → 1 as n →∞.

For the second stopping time we similarly assume that

k∗n = O
(
kn logγ(n/kn)

)
as n →∞ (for some γ > 0). (2)

Theorem 4. Assume that (2) holds. If {kn} is as in Theorem 2, then, under H1,

τ
(2)
n − k∗n
η

|θ∗−θ|
√

k∗n
− c(2)

n
d−→ N(0, 1) as n →∞.

Remark 6. Here it is also obvious from the proof that

PH1(τ
(2)
n ≥ k∗n) → 1 as n →∞.

In Gut and Steinebach (2002), Section 5, we also considered

Ŷk = Ŷk,n =
N(k)−N(k − hn)− hnθ̂k

η̂k

√
hn

, k = ĥn, . . . , n,

and, for testing H0 against the two-sided alternative H1,

τ̂ (1)
n = min{ĥn ≤ k ≤ n : |Ŷk| > ĉ(1)

n }

(min ∅ := +∞), where ĉ
(1)
n again is a critical value and θ̂k and η̂k above are “ suitable” sequential

estimates. The “null asymptotics” from Theorem 1 (in the case of θ, η known) retain, so that ĉ
(1)
n can

also be chosen from an extreme value asymptotic, that is, we have

Theorem 5. If hn � ĥn � n, but
√

hn � n1/r, then, under H0, with the same normalizing sequences
{a(1)

n } and {b(1)
n } as in Theorem 1,

a(1)
n max

ĥn≤k≤n
|Ŷk| − b(1)

n
d−→ E as n →∞,

i.e., the critical value ĉ
(1)
n can (asymptotically) be chosen as

ĉ(1)
n = c(1)

n =
E1−α + b

(1)
n

a
(1)
n

(
∼

√
2 log(n/hn)

)
,

with E1−α as in Theorem 1.

Moreover, with θ̂ = θ̂
τ̂
(1)
n

, η̂ = η̂
τ̂
(1)
n

, we have (see Gut and Steinebach (2009), Section 6):

Theorem 6. If {hn} and {ĥn} are as in Theorem 5, then, under H1,

τ̂
(1)
n − k∗n
η̂

|θ∗−θ̂|

√
hn

− c(1)
n

d−→ N(0, 1) as n →∞.
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5 EWMA charts
Let 0 < λ = λn ≤ 1 be a weight parameter (which thus may vary with n), and let Yk = Yk,n be given
as before. Set Shn−1 = Shn−1,n = 0, and define, recursively,

Sk = Sk,n = λYk + (1− λ)Sk−1 =
k−hn∑
j=0

(1− λ)jYk−j , k = hn, . . . , n.

The relevant stopping time in this setting is

τ (3)
n = min{hn ≤ k ≤ n : |Sk| > c(3)

n } .

Vaguely speaking the stochastic process describing these charts are sums of exponentially weighted
(normalized) windows of a random walk, so that, in contrast to the previous models, we are facing
heavily correlated data.

5.1 Null asymptotics
Following is the EWMA analog of Theorem 1.

Theorem 7. Let {hn} be given as in Theorem 1 and choose λ = λn = a/hn with a > 0 fixed. Then,
with normalizations

a(3)
n =

√
2 log(n/hn) and b(3)

n = 2 log(n/hn) +
1
2

log(C/(2π2)) ,

we have, under H0,

a(3)
n

maxhn≤k≤n |Sk|
v

− b(3)
n

d−→ E as n →∞,

where

v2 = v2(a) = 1− 1
a
(1− e−a) and C = C(a) =

a(1− e−a)
2(1− 1

a(1− e−a))
=

a2

2
· 1− v2

v2
,

from which it follows that the critical value c
(3)
n can (asymptotically) be chosen as

c(3)
n =

v(E1−α + b
(3)
n )

a
(3)
n

,

where E1−α denotes the (1− α)-quantile of E as before.

5.2 Asymptotics under the alternative
The following asymptotics can be used to get an idea of the (asymptotic) power of our sequential tests
based on EWMA charts.

Theorem 8. Let {hn} be as in Theorem 7 with the additional assumption that

log((n− k∗n)/hn)
log log n

→∞ as n →∞,

and set

a(4)
n =

√
2 log((n− k∗n)/hn) and b(4)

n = 2 log((n− k∗n)/hn) +
1
2

log(C/(2π2)),

where C is as given in Theorem 7. Further, choose λ = λn = a/hn, for some fixed a > 0. Then, under
H1, we have the following asymptotics:

a(4)
n

η

vη∗

(
max

hn≤k≤n
|Sk| −

|θ − θ∗|
η

√
hn

)
− b(4)

n
d−→ E as n →∞,

where E is as in Theorem 7.



6 Gut and Steinebach

5.3 Sketch of the proof of Theorem 7
The proof proceeds in steps.

Step 1 (Invariance) The (obvious) first step is strong approximation, which means that we replace the
Y -increments and the EWMA chart with the corresponding Wiener analogs.

Step 2 (Partial maxima) In this step one shows that a first portion of the chart may be discarded.

Step 3 (Stationarity) One replaces the Wiener-EWMA by a stationary Gaussian array.

Step 4 (Extreme value asymptotics) The array is replaced by its continuous extension, that is, a se-
quence of stationary Gaussian processes with autocorrelation functions rn(t), satisfying certain asymp-
totics, which, together with a series of (somewhat lengthy) computations in order to determine variances,
covariances and autocorrelation functions for the Wiener-EWMA charts, allows us to apply an extension
of Leadbetter et al. (1983), Theorem 12.3.5, concerning asymptotics for a single Gaussian process, to
our context, viz., a sequence of such processes; cf. Gut and Steinebach (2004), Theorem 5.1.

Having come so far we have established asymptotics for the one-sided extreme, from which the two-
sided extreme follows in view of the symmetry of the processes in the stationary array and the asymptotic
independence of maxima and minima in the corresponding extreme value asymptotics.

The proof of Theorem 8 follows the same procedure with some additional complications.

6 Some concluding remarks
In the present note we have reviewed some of our recent results concerning the asymptotic behaviour
(as n → ∞) of some monitoring procedures for detecting structural breaks (“change-points”) in a
sequence of counting data, which are sequentially observed at equidistant time points t = 0, 1, . . . ,
up to a truncation point n. It has been shown that critical boundaries can be chosen via extreme value
asymptotics, which, via invariance, are based on corresponding results for Gaussian processes.

We wish to conclude our discussion by making the following remarks:

• Although we confined ourselves here to the case of two-sided alternatives, analogous results are
available for the one-sides cases too. In fact, typically the one-sided case is discussed first, and the
two-sided one follows from the latter via symmetry and asymptotic independence of maxima and
minima.

• It is essentially sufficient to discuss the case of the “in-control” parameters θ, η being known. In case
of unknown parameters it turns out that suitable sequential estimates can be plugged in.

• As hinted at in the Introduction, all procedures based on the respective stopping rules are designed
such that the false alarm rates (asymptotically) attain a prescribed level α and that the tests possess
(asymptotic) power 1. In case of “early change” alternatives even more precise asymptotics are
available, in that asymptotic normality of stopping times can be proved.
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