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Abstract. The present paper studies a sequential stopping rule for estimating the mean of a normal distribution, under LINEX
loss, when the variance is unknown. The exact distribution of the stopping variable is derived, as well as exact formulae
for the expected estimator of the mean, and its risk functional. The results of the present paper are different from those of
Chattopadhyay et al (2005) or those of Takada (2006).
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1 Introduction
A sequential application under a LINEX loss function was first developed by Chattopadhyay (1998).
Under this loss function, Takada (2000) introduced a sequential minimum risk point estimation problem
for a normal mean whereas Takada (2001) gave a Bayesian formulation for sequentially estimating a
Poisson mean. Takada and Nagao (2004) introduced extensions of such estimation problems under the
same loss function assuming a multivariate normal distribution. Chattopadhyay et al. (2005) gave a
purely sequential sampling scheme followed by batch sampling in order to address a prediction problem
in linear regression under the same loss function.

The present article derives the asymptotic properties, the exact distributions of stopping times, and
the associated functionals for estimating the mean in a normal distribution under a LINEX loss function.
The purely sequential bounded risk procedures proposed in this paper in the light of Robbins (1959) are
different from those of Takada (2006) and Chattopadhyay (1998). The main reason for this difference
stems from the fact that their earlier stopping rules and those that we have introduced here are different.

2 Fixed Sample Risk Evaluations
Let X1, X2, . . . be independent and identically distributed (i.i.d.) random variables, having a N(µ, σ2)
distribution with −∞ < µ < ∞, 0 < σ2 < ∞. We assume that both parameters are unknown. The
objective is to estimate the mean µ under the LINEX loss function:

Ln(µ̂n, µ) = exp{a(µ̂n − µ)} − a(µ̂n − µ)− 1, (1)

where µ̂n ≡ µ̂n(X1, . . . , Xn) is an estimator of µ constructed from a random sample X1, . . . , Xn of
fixed size n where a 6= 0 is held fixed.

Let us denote θ = (µ, σ2). When σ2 is known, an estimator of µ, when X̄n is the sample mean, is

µ̂n = X̄n −
aσ2

2n
. (2)

The corresponding LINEX risk value is

Eθ

{
L

(
X̄n −

1
2
aσ2

n
, µ

)}
=
a2σ2

2n
. (3)

For a given risk-bound ω, 0 < ω <∞, if σ2 were known, the risk associated with µ̂n will be smaller
than ω when n is the smallest integer ≥ nω, where

nω ≡ nω(σ2) =
a2σ2

2ω
. (4)
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Since σ2 is unknown, we use the following estimator

µ̃n = X̄n −
a

2
S2
n

n
, (5)

where S2
n is the sample variance. The bias of this estimator is

Bias(µ̃n) = −a
2
σ2

n
. (6)

Notice that µ̃n is translation and scale equivariant. The LINEX risk of µ̃n is

R(µ̃n) = Eθ

{
exp

(
a

(
X̄n − µ−

aS2
n

2n

))}
− E

{
a

(
X̄n − µ−

aS2
n

2n

)}
− 1

= Eθ{ea(X̄n−µ)}Eθ
{

exp
(
−a

2S2
n

2n

)}
+
a2σ2

2n
− 1

=
(

1 +
a2σ2

n(n− 1)

)−(n−1)/2

exp
(
a2σ2

2n

)
+
a2σ2

2n
− 1.

(7)

3 Sequential Sampling

3.1 The Stopping Variables

We begin with m0(= 2k + 1) initial observations X1, . . . , Xm0 and then continue sampling, if needed,
by observing a pair of observations at a time. Let M ≡Mm0 denote the final number of pairs observed,
Mm0 ≥ k and the final number of recorded observations N ≡ Nm0(= 2Mm0 + 1) where the stopping
variable Mm0 is formulated as follows:

Mm0 = min
{
m ≥ k : 2m+ 1 ≥ a2

2ω
S2

2m+1

}
. (8)

Finally, µ is estimated by µ̃Nm0
= X̄Nm0

− a

2Nm0

S2
Nm0

.

The stopping rule from (8) can be equivalently expressed as

Mm0 = min

{
m ≥ k : 2m+ 1 ≥ a2σ2

2ωm

m∑
i=1

Ti

}
, (9)

where T1, T2, . . . denote an i.i.d. sequence of exponentially distributed random variables with mean

β = 1. Obviously,
m∑
i=1

Ti and G(1,m) have identical distributions for every fixed m ≥ k.

As before, let P (·; η) and p(·; η) respectively denote the c.d.f. and p.m.f. of a Poisson random vari-
able with mean η. Also, let

λ = 2ω/(a2σ2), 0 < λ <∞.

According to the Gamma-Poisson relationship we have

Pσ2{Mm0 = k} = P{G(1, k) ≤ λk(2k + 1)}
= 1− P (k − 1;λk(2k + 1)).

(10)

In order to determine the distribution ofMm0 , on the set {Mm0 > k}, we introduce the homogeneous
Poisson process {M(t), t ≥ 0} with intensity β = 1. The distribution of the mth jump point of M(t) is
like that of G(1,m). The stopping variable Mm0 , defined in (9), is therefore equivalent to the value of
M at the first time when (2M(t) + 1)M(t) ≥ λ−1t.
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We therefore define a boundary B(t) to be the positive root of the quadratic equation 2M2(t) +
M(t)− λ−1t = 0. That is,

B(t) = −1
4

+
1
4

√
1 +

8
λ
t, t ≥ 0. (11)

Notice that B(t) is a continuous, increasing concave function, with B(0) = 0 and lim
t→∞

B(t) = ∞. We
define another stopping time

T̃ = inf{t ≥ tk : M(t) ≥ B(t)}, (12)

where
tk = λk(2k + 1). (13)

In general, for all m ≥ k, let tm be the root of B(t) = m, namely

tm = λm(2m+ 1), m ≥ k. (14)

Since M(tk) ∼ Poisson(tk), we have

Pσ2{T̃ = tk} = 1− P (k − 1; tk) = Pσ2{M(T̃ ) = k} = Pσ2{Mm0 = k}. (15)

Generally, for all Mm0 ≥ k, Mm0 and M(T̃ ) have the same distribution. Again, bB(t)c is the largest
integer smaller than B(t). Then, M(T̃ ) = bB(T̃ )c+ 1.

3.2 The Distribution and the Mean ofMm0

Define the defective p.d.f.
g(i; t) = Pσ2{Mm0(t) = i, T̃ > t}. (16)

Notice that g(i; t) = 0 for all i ≥ B(t), and

Pσ2{T̃ > t} =
bB(t)c∑
i=0

g(i; t). (17)

Theorem 1. Under sequential sampling (9), for all m > k, we have

Pσ2{Mm0 = m} =
m−2∑
j=0

g(j; tm−1)(1− P (m− 1− j; tm − tm−1)), (18)

and

Eσ2{Mm0} = k +
∞∑
j=k

j−1∑
i=0

g(i; tj). (19)

3.3 The Expected Value and the LINEX Risk of µ̃Nm0

Under sequential sampling according to (8), we consider the following estimator of µ at stopping:

µ̃Nm0
= X̄Nm0

− a

2Nm0

S2
Nm0

. (20)

In this section, we develop the bias and the LINEX risk of µ̃Nm0
.

Observe that X̄n and (S2
m0
, . . . , S2

n) are independent for all fixed n ≥ m0. Now, since I{Nm0 = n}
belongs to the subfield σ(S2

m0
, . . . , S2

n), we have Eσ2{X̄Nm0
} = µ. Thus the bias of µ̃Nm0

is

−a
2
Eσ2{S2

Nm0
/Nm0}.

For the proofs of the following two theorems, see Zacks and Mukhopadhyay (2009).
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Theorem 2. Under sequential sampling (8), we have the following expression for the bias of µ̃Nm0
, with

∆l = tl − tl−1,

Bias(µ̃Nm0
) = −aσ

2

2

[
tk

k(2k + 1)
(1− P (k − 1; tk))

+
∞∑

l=k+1

1
l(2l + 1)

l−2∑
i=0

g(i; tl−1)

× (tl−1(1− P (l − 1− i;∆l)) + (l − i)(1− P (l − i;∆l)))
]
.

(21)

Since

Eθ{exp(a(X̄Nm0
− µ)) | Nm0} = exp

(
a2σ2

2Nm0

)
. (22)

Thus, we can rewrite

R(µ̃Nm0
) = Eσ2

{
exp

(
−
a2(S2

Nm0
− σ2)

2Nm0

)}
+
a2

2
Eσ2

{
S2
Nm0

Nm0

}
− 1. (23)

The second term on the right-hand side of (23) is found from (21).

Theorem 3. Under sequential sampling (8), we have

Eσ2

{
exp

(
−
a2(S2

Nm0
− σ2)

2Nm0

)}
= (1− P (k − 1; tk)) exp

(
−ω

(
1− k

tk

))

+
∞∑

l=k+1

exp
(
−ω

((
1− 1

l

)(
1− 2

2l + 1

)
− l

tl

))

×
l−2∑
i=0

g(i; tl−1)
(

1 +
ω

tl

)−(l−i)(
1− P (l − l − i;∆l

(
1 +

ω

tl

))
.

(24)

3.4 Numerical Example
In Table 1, within each block, the first row provides the exact values of E{Nm0}, Bias(µ̃Nm0

) and
R(µ̃Nm0

) when we fixed k = 9, a = 5, σ = 1, 2 and ω = 0.5, 0.1.

Table 1. Exact operating characteristics of
sequential estimator µ̃Nm0

σ ω nω E{Nm0} Bias(µ̃Nm0
) Risk(µ̃Nm0

)

1 0.5 25 25.55 −0.09576 0.54498

1 0.1 125 124.33 −0.01976 0.10424

2 0.5 100 99.28 −0.09848 0.53329

2 0.1 500 499.57 −0.015000 0.100950
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