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Abstract. The change-point problem for high-order Markov chain under composite hypotheses before and after the change
is considered. A non-asymptotic inequality for the new optimality criterion is proposed.

Keywords. Change-point problem, high-order Markov chain, prior inequality.

1 Problem description

LetX0 = {x0
n}∞n=1, X

1 = {x1
n}∞n=1 are independent strictly stationary ergodick-order Markov chains

with real values (k = 0 corresponds to independent variables). The observations have the formZ =
{zn}∞n=1, where

zn =
{
x0

n, if 1 ≤ n < m
x1

n, if n ≥ m

andm is the change-point.
Let Θ0, Θ1 are certain sets in finite dimensional parametric spaces. Suppose that forXi, i = 0, 1

there exist families (overθi) of k-dimensional initial (stationary) distribution density functions (d.f.)
fi(θi, x), x ∈ Rk, θi ∈ Θi, i = 0, 1 with respect to someσ-finite measureµ on Rk. Suppose
that there exist conditional (transition) density functions (c.d.f.)ϕi(θi, x

i
n = u|xi

n−1, . . . , x
i
n−k) =

ϕi(θi, u|xn−1
n−k) = ϕi(θi, u|x), x ∈ Rk, n ≥ k + 1, i = 0, 1 with respect to one-dimensional marginal

µ1 of µ. D.f. and c.d.f. are known and defined for all parameter values from some open neighbourhoods
of parametric sets. It is assumed that for anyθi ∈ Θi, i = 0, 1 the measurefi(θi, x)dµ is the unique in-
variant measure and thatP0

⋂
P1 = ∅, wherePi, i = 0, 1 is the collection (over the parameterθi ∈ Θi)

of measures defined by functions{ϕi(θi, u|x), fi(θi, x)}.
In what follows we denote byPm,ϑ(Em,ϑ) the measure (mathematical expectation) corresponding

to the sequence{zn}∞n=1 with the change-point at the instantm and the fixed value of the parame-

ter ϑ = (θ0, θ1) ∈ Θ
def= Θ0 × Θ1. In casem = 1 we use the symbolsP1,θ1(E1,θ1). Symbols

P∞,ϑ(E∞,ϑ) correspond to the observed sequence without the change-point. In this case we use the
symbolsP∞,θ0(E∞,θ0).

The problem consists in sequential detection of the (a priori unknown) change-pointm based on the
observations{zn}.

Denote byd(n) the decision function of a change-point procedure (i.e., a function measurable w.r.t.
the natural flow ofσ-algebras generated by observations and such thatd(n) = 1 corresponds to the
decision about the presence of the change at the instantn andd(n) = 0 corresponds to the decision
about the absence of the change). For example, the decision functiondCUS(n) in classical CUSUM
procedure for the case of independent observations{ηn} with d.f. f0(·) before andf1(·) after the change
is equal to

dCUS(n) = I

(
max

1≤k≤n

n∑
i=k

ln
f1(ηi)
f0(ηi)

> C

)
whereI(A) denotes the indicator function of the setA.

The stopping timeτ corresponding to the decision functiond(n) is equal toτ = inf{n : d(n) = 1}.
As a rule, any change-point detection procedure depends on a certain “large parameter”C such

that the probability of false decision tends to zero as the “large parameter” goes to infinity. Very often
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the “large parameter” is simply a decision threshold (as in CUSUM procedure), but it is not necessary.
We suppose that change-point detection procedures contain such “large parameter”C and will equip
corresponding decision functions and stopping times with indexC.

For an arbitrary pointθ1 ∈ Θ1 put

Θ∗0(θ1) = arg maxz∈Θ0

(∫
ln
ϕ1(θ1, u|x)
ϕ0(z, u|x)

ϕ1(θ1, u|x)f1(θ1, x)dµ(x)dµ1(u)
)−1

Obviously,Θ∗0(θ1) is the set of theleast favorable alternative toθ1 before the change-point. For an
arbitrary pointθ1 ∈ Θ1 put

J(θ1) =
∫

ln
ϕ1(θ1, u|x)
ϕ0(θ∗0, u|x)

ϕ1(θ1, u|x)f1(θ1, x)dµ(x)dµ1(u),

whereθ∗0 ∈ Θ∗0(θ1).
Define thesupremal probability of false decision(SPFD)γ(θ1, τC) for the stopping timeτC gener-

ated by the decision functiondC(n), and an arbitrary pointθ1 ∈ Θ1

γ(θ1, τC) = sup
θ∗0∈Θ∗

0(θ1)
sup

n
P∞,θ∗0

{
dC(n) = 1

}
and put

α(θ1, τC) = sup
θ∗0∈Θ∗

0(θ1)
sup

n
P∞,θ∗0

{
τC = n

}
Obviously,α(θ1, τC) is thelower boundfor SPFD and therefore, usuallyα(θ1, τC) → 0 asC →∞.
Stopping timeτC is callednondegenerateif 0 < α(θ1, τC) < 1 for anyθ1.
For an arbitrary pairϑ = (θ∗0, θ1), θ1 ∈ Θ1, θ

∗
0 ∈ Θ∗0(θ1) and any fixedm consider the following

criterion of optimality

K (τC , θ1,m) =

sup
θ∗0∈Θ∗

0(θ1)
Em,ϑ

(
τC − (m+ k)

∣∣∣τC ≥ m+ k
)

| lnα(θ1, τC)|

It is known that if a random variableξ takes positive integer values and satisfies the following
condition

sup
n

P{ξ = n} ≤ α

then

Eξ ≥ (2α)−1(1 + o(1)) asα→ 0

and this lower bound is sharp.
From this it follows that for anyθ1 ∈ Θ1, θ0 ∈ Θ∗0(θ1)

E∞,θ0τC ≥ (α(θ1, τC)−1 .

Therefore,K (τC , θ1,m) is theratio (in an appropriate scale) of the maximal conditional average delay
time for the parameterθ1 after the change to the worst (i.e. the minimal) average time before a false
decision for the least favorable alternative toθ1.

In our opinion, the proposed performance index characterizes the quality of a change-point detection
method no worse than the conventional criteria and corresponds well to the pragmatic sense of the
change-point detection problem.
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2 Assumptions

For anyϑ = (θ0, θ1) ∈ Θ put

h(n, ϑ) def= ln
ϕ1(θ1, zn|zn−1

n−k)

ϕ0(θ0, zn|zn−1
n−k)

, n ≥ k + 1

g(m,ϑ) def= ln
f1(θ1, zm+k−1

m )∏m+k−1
j=m ϕ0(θ0, zj |zj−1

j−k)
, k ≥ 1, m ≥ k + 1

To formulate the results we will use assumptions from the following list.
A1. Any two measuresν0 ∈ P0, ν1 ∈ P1 are equivalent.
A2. The functionsh(n, ϑ), g(m,ϑ) are well defined random variables w.r.t. any measurePm,ϑ, 1 ≤

m ≤ ∞.
A3.

∞ > sup
θ̃1∈Θ1

sup
ϑ∈Θ

E1,θ̃1
h(n, ϑ) ≥ inf

θ̃1∈Θ1

inf
ϑ∈Θ

E1,θ̃1
h(n, ϑ) > 0.

A4.Θ is a compact set.
A5. The function (∫

ln
ϕ1(θ1, u|x)
ϕ0(θ0, u|x)

ϕ1(θ1, u|x)f1(θ1, x)dµ(x)dµ1(u)
)−1

is continuous w.r.t.θ0 ∈ Θ0 for any θ1 ∈ Θ1 (and therefore, the setΘ∗0(θ1) is well defined for any
θ1 ∈ Θ1).

A6. Em,ϑg(m,ϑ) <∞ for anym,ϑ.

A7. The functionΦ(ϑ, u, z) def=
ϕ1(θ1, u|z)
ϕ0(θ0, u|z)

is continuous w.r.t.ϑ = (θ0, θ1) for µ-a.e.(u, z).

A8.
0 > sup

θ̃0∈Θ0

sup
ϑ∈Θ

E∞,θ̃0
h(n, ϑ) ≥ inf

θ̃0∈Θ0

inf
ϑ∈Θ

E∞,θ̃0
h(n, ϑ) > −∞.

A9. For the random sequence{h(n, ϑ)} denote byψ(m)(ϑ̃, ϑ, s) the coefficient ofψ-mixing (be-
tweenσ-algebrasσ{zn

1 } andσ{z∞n+s} with supremum overn) under measurePm,ϑ̃. Then (uniform
ψ-mixing):

sup
ϑ̃∈Θ

sup
ϑ∈Θ

∑
s

√
ψ(m)(ϑ̃, ϑ, s) <∞, m = 1, ∞.

A10. (Uniform Cramer condition):

sup
n

sup
ϑ̃∈Θ

sup
ϑ∈Θ

Em,ϑ̃ exp{th(n, ϑ)} <∞ for |t| < H,m = 1, ∞;

A11. There exists the uniform w.r.t.ϑ = (θ0, θ1), θ̃1 the limit

σ2(ϑ, ϑ̃) = lim
T→∞

E1,θ̃1
(T − k)−1

(
T∑

n=k+1

(h(n, ϑ)−E1,θ̃1
h(n, ϑ))

)2

.

A12. For anyϑ, θ̃0 the function

κ(t, ϑ, θ̃0)
def= lnE∞,θ̃0

exp{th(n, ϑ)}

has only two zeros: 0 andt∗(ϑ, θ̃0) > 0, the functiont∗(·, ·) is continuous andmin
ϑ,θ̃0

t∗(·, ·) > 0.

Let us make some comments on the assumptions. Consider the equation

yn+1 = F (yn, yn−1, . . . , yn−k+1, ξn+1), n ≥ 0, (1)
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wherey0 = (y0, y−1, . . . , y−k+1) is the initial random vector,{ξ}∞n=1 is the sequence of i.i.d. random
variables independent ofy.

It is well known that{yn} is ak-order Markov chain. In the literature one can easily find conditions
on the functionF (·) and the random sequence{ξn} such that the sequence{yn} will be a strictly
stationary ergodick-order Markov chain with integrable correlation function (the latter corresponds

to assumption A11). For example, letF (·) =
k−1∑
s=0

asyn−s + ξn+1, the corresponding polynomial is

stable one,ξn is square integrable and the distribution ofy0 coincides with the stationary distribution of
(yn, yn−1, . . . , yn−k+1). Then all such assumptions hold.

In (Blum et al., 1963) one can find checkable necessary and sufficient conditions forψ-mixing of
strictly stationary ergodic Markov chain and these conditions guarantee that theψ-mixing coefficient
tends to zero exponentially (see assumption A9).

Suppose thatXi, i = 0, 1 is strictly stationary ergodic exponentiallyψ-mixing high-order Markov
chain with integrable correlation function for any parameterϑ. Then the same is true for{h(n, ϑ)}
becauseh(n, ϑ) depends only of finite number of previous observations.

3 Main results

For an arbitraryθ1 ∈ Θ1 and0 < r < 1 define positive integersL (τC, θ1, r) andL (τC , r) as follows

L (τC, θ1, r) = min{n : sup
θ∗0∈Θ∗

0(θ1)

∑∞
k=n P∞,θ∗0

(τC = k) ≤ r}

L (τC , r) = sup
θ1∈Θ1

L (τC, θ1, r)

Theorem 1. Letϑ = (θ∗0, θ1), θ1 ∈ Θ1, θ
∗
0 ∈ Θ∗0(θ1) be an arbitrary point. LetτC be a nondegenerate

stopping time such that sup
θ∗0∈Θ∗

0(θ1)
Em,ϑ (τC − (m+ k))+ < ∞ for any fixedC,m and any fixed point

θ1 ∈ Θ1. Let assumptions A1 - A6 hold. Then for any fixedm and any pointθ1 ∈ Θ1 the following
inequality holds

K (τC, θ1,m) ≥ J−1(θ1)


1−

ln

 m+ k + L (τC, r
∗)

sup
θ∗0∈Θ∗

0(·)
P∞,θ∗0

(τC ≥ m+ k)
+ 1


| lnα(θ1, τC)| −

− J(θ1) +B
sup

θ∗0∈Θ∗
0(·)

P∞,θ∗0
(τC ≥ m+ k) | lnα(θ1, τC)|


(2)

where
r∗ = α(θ1, τC) sup

θ0∈Θ∗
0(θ1)

P∞,θ0 (τC ≥ m+ k) ,

B =

 sup
θ0∈Θ∗

0(θ1)
Em,ϑg(m,ϑ), k ≥ 1

0, k = 0

Remark 1.We use the independence assumption of the sequencesX0 andX1 only for a simplicity. In
general, inequality (2) must be slightly changed, but the main termJ−1(θ1) will be the same.

Consider the following class of stopping times

M = {τC : sup
θ0∈Θ∗

0(θ1)
Em,ϑ (τC − (m+ k))+ <∞,

lim sup
r→0

ln L (τC, r)
| ln r| = 0 for any fixedm, θ1, C}
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In particular, stopping times such that their mathematical expectations under the change-point are
finite (for all values of parametersθ0, θ1 and any finite value of the “large parameter”C) and their
distributions without the change-point have exponential tails belong toM.

From Theorem 1 we have the following

Corollary 1. Let for τC ∈ M the following condition holds

lim sup
C→∞

α (θ1, τC) = lim sup
C→∞

sup
θ0∈Θ∗

0(θ1)
sup

n
P∞,θ0

{
τC = n

}
= 0

Then for any fixedm andθ1 ∈ Θ1

lim
C→∞

K (τC, θ1,m) = lim
C→∞

sup
θ0∈Θ∗

0(θ1)
Em,ϑ

(
τC − (m+ k)

∣∣τC ≥ m+ k
)

| lnα(θ1, τC)|
≥ J−1(θ1) (3)

A method of sequential change-point detection is calledadaptive asymptotically optimalif the
lower bound in inequality (3) is attained for it asC → ∞. The term “adaptive” in this context means
that the asymptotic optimality of a test does not depend on a true (and unknown) distribution function of
observations from the familyP1.

Define theminimax CUSUMstopping time as follows:

T (C) = inf{n ≥ k + 1 : min
θ0∈Θ0

max
θ1∈Θ1

max
k+1≤j≤n

n∑
i=j

ln
ϕ1(θ1, zi|zi−1

i−k)

ϕ0(θ0, zi|zi−1
i−k)

> C}

Theorem 2. Let assumptions A1 - A12 hold. Then the minimax CUSUM stopping timeT (C) is adaptive
asymptotically optimal. Besides, for anyθ1 ∈ Θ1 the following equality holds:

lim
C→∞

| lnα (θ1, T (C)) |
C

= max
θ∗0∈Θ∗

0(θ1)
max
θ̃0∈Θ0

min
θ̃1∈Θ1

t∗(θ̃0, θ̃1, θ∗0)

4 Sketch of the proof of Theorem 2

The proof is based on the following main points.
1. For any pointϑ = (θ0, θ1) ∈ Θ consider the following stopping time

τC(ϑ) = inf

n ≥ k + 1 : max
k+1≤j≤n

n∑
i=j

ln
ϕ(θ1, zi|zi−1

i−k)

ϕ(θ0, zi|zi−1
i−k)

> C


Obviously,τC(ϑ) is the classical CUSUM stopping time for the sequence{h(n, ϑ)}.
Then for anyϑ = (θ0, θ1), ϑ̃ = (θ̃0, θ̃1) and any fixedm the following relations hold:
a)

lim
C→∞

(τC(ϑ)−m− k)+

C
= A−1(θ̃1, ϑ) Pm,ϑ̃ − a.s.

b) the collection (over the parameterC) of random variables
(τC(ϑ)−m− k)+

C is uniformly inte-
grable w.r.t. the measurePm,ϑ̃

c)

lim
C→∞

Em,ϑ̃ (τC(ϑ)−m− k)+

C
= A−1(θ̃1, ϑ)

whereA(θ̃1, ϑ) def= E1,θ̃1
h(n, ϑ).
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In (Brodsky and Darkhovsky, 2000, p. 229) it was proved (in slightly different notations) that for any
fixedm,ϑ, ϑ̃ from conditions A3, A9, A10 the property a) follows. It was also proved there that under
conditions A3, A9, A10, A11 the property b) holds. Now c) follows from a) and b).

2. For anyϑ ∈ Θ andθ∗0 ∈ Θ∗0(θ1) put

βC(ϑ, θ∗0)
def= sup

n
P∞,θ∗0

 max
k+1≤j≤n

n∑
i=j

ln
ϕ(θ1, zi|zi−1

i−k)

ϕ(θ0, zi|zi−1
i−k)

> C


Then

lim
C→∞

| lnβC(ϑ, θ∗0)|
C

= t∗(ϑ, θ∗0)

wheret∗(ϑ, θ∗0) was given above. The convergence here is uniform w.r.t.ϑ, θ∗0.
The proof can be found in (Brodsky and Darkhovsky, 2000, p.261). This proof uses assumptions

A8—A12. The uniform convergence is guaranteed because these assumptions are fulfilled uniformly
w.r.t.ϑ, θ∗0 .

The points1 and2 play crucial role in the proof. The continuance of the proof can be done analo-
gously (Brodsky and Darkhovsky, 2008). As a result we prove that

lim
C→∞

sup
θ∗0∈Θ∗

0(θ1)
Em,ϑ (T (C)− (m+ k))+

| lnα (θ1, T (C)) |
= J−1(θ1) (4)

From (4) we get the asymptotic optimality ofT (C) becauseP∞,θ0 (T (C) ≥ m+ k) → 1 asC →
∞ for anyθ0 ∈ Θ∗0(θ1) and any fixedm.
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