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1 Introduction and problem description
On some probability space (Ω,F,P), let (X(i))t≥0, 1 ≤ i ≤ d be d independent Brownian motions with
constant drifts µ(i), 1 ≤ i ≤ d, and (T (j)

n , Z
(j)
n )n≥1, 1 ≤ j ≤ m be m independent compound Poisson

processes independent of the Brownian motions (X(i))t≥0, 1 ≤ i ≤ d. For every 1 ≤ j ≤ m, (T (j)
n )n≥1

are the arrival times, and (Z(j)
n )n≥1 are the marks on some measurable space (E, E), with arrival rates

λ(j) and mark distributions ν(j)(·) on (E, E).
Suppose that µ(i), 1 ≤ i ≤ d and (λ(j), ν(j))1≤j≤m are unknown, but exactly one of the following

two simple hypotheses,

H0 :

{
µ(i) = µ

(i)
0 , 1 ≤ i ≤ d

(λ(j), ν(j)) = (λ(j)
0 , ν

(j)
0 ), 1 ≤ j ≤ m

}
, H1 :

{
µ(i) = µ

(i)
1 , 1 ≤ i ≤ d

(λ(j), ν(j)) = (λ(j)
1 , ν

(j)
1 ), 1 ≤ j ≤ m

}
,

is correct for some known µ(i)
0 , µ(i)

1 for every 1 ≤ i ≤ d, and (λ(j)
0 , ν

(j)
0 ), (λ(j)

1 , ν
(j)
1 ) for every 1 ≤

j ≤ m, where probability measures ν(j)
0 and ν(j)

1 on (E, E) are equivalent. Let Θ be the index of correct
hypothesis, which is a {0, 1}-valued random variable with prior distribution P{Θ = 1} = 1 − P{Θ =
0} = π for some known π ∈ (0, 1).

The problem is to find a stopping time τ and a terminal decision rule d which depend only on the ob-
servations of Brownian motions (X(i)

n )n≥0, 1 ≤ i ≤ d and compound Poisson processes (T (j)
n , Z

(j)
n )n≥1,

1 ≤ j ≤ m and which have the smallest Bayes risk

Rτ,d(π) := E
[
τ + 1{τ<∞}

(
a1{d=0,Θ=1} + b1{d=1,Θ=0}

)]
,

where a and b are known positive constants and correspond to the costs of making wrong terminal
decisions. If such a decision rule (τ, d) exists, then it strikes optimal balance between the expected total
sampling cost and the expected cost of selecting the wrong hypothesis. Similar problems arise when the
efficacy of a new drug or a new medical procedure has to be determined in a clinical study, from which
withdrawals of subjects at any time are always possible if their prognoses worsen.

The non-Bayes formulation of the sequential hypothesis testing problem has been studied by others
and can be found in the recent reviews and contributions made by Lai [9,10], Dragalin, Tartakovsky, and
Veeravalli [6,7], Lorden [11].

Bayesian sequential hypothesis testing problem was studied in discrete-time for the identification of
the common distribution of i.i.d. observations by Wald and Wolfowitz [15], Blackwell and Girshick [1],
Zacks [16], Shiryaev [14], in continuous-time for the identification of the drift of a Brownian motion by
Shiryaev [14], for the identification of the arrival rate of a simple Poisson process by Peskir and Shiryaev
[12,13], for the identification of the arrival rate and mark distribution of a compound Poisson process by
Gapeev [8], Dayanik and Sezer [2], Dayanik, Poor, and Sezer [5]. The problem has not been addressed
earlier for the joint identification of local characteristics of concurrently observed several independent
Brownian motions and compound Poisson processes, and its solution is one of our contributions.
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We show that an optimal decision rule (τ, d) always exists. The optimal stopping time τ is when the
likelihood-ratio process

Lt := exp

{
d∑
i=1

(
µ

(i)
1 − µ

(i)
0

)(
X

(i)
t −X

(i)
0

)
− t

2

d∑
i=1

[(
µ

(i)
1

)2
−
(
µ

(i)
0

)2
]}

× exp


m∑
j=1

∑
n:0<T

(j)
n ≤t

log

(
λ

(j)
1

λ
(j)
0

dν(j)
1

dν(j)
0

(
Z(j)
n

))
− t

m∑
j=1

(
λ

(j)
1 − λ

(j)
0

)
exits for the first time a bounded interval (φ1(1 − π)/π, φ2(1 − π)/π) for some suitable constants
0 < φ1 < b/a < φ2 < ∞, and optimal terminal decision rule d is to choose the null hypothesis if
πLτ/(1 − π) ≤ b/a and the alternative hypothesis otherwise. We describe a provably convergent nu-
merical method to calculate both the minimum Bayes risk and the decision boundaries φ1 and φ2 of the
optimal stopping rule τ . The minimum Bayes risk is shown to be the uniform limit of a decreasing se-
quence of successive approximations, which are obtained by applying a contraction mapping iteratively
to a suitable initial function. The maximum absolute difference between successive approximations is
bounded by an explicit bound, which decays at a known exponential rate with the number of iterations.
Thus, one can always determine the necessary number of iterations ex-ante for any desired level of
accuracy in the approximations of the minimum Bayes risk and optimal decision boundaries.

We address the problem by reducing it to the optimal stopping of the jump-diffusion likelihood-ratio
process. The method strips the jumps away from the diffusion part and applies the potential-theoretic
direct solution method developed by Dayanik and Karatzas [4] and Dayanik [3]. The solution method
developed here can also be applied effectively to price American-type financial contracts and real options
with jump-diffusion underlyers.

2 A model
Let (Ω,F ,P0) be a probability space hosting the following independent stochastic elements: (i) X is a
Brownian motion with drift rate µ0, (ii) (Tn, Zn)n≥1 is a compound Poisson process with arrival rate λ0

and mark distribution ν0 on (E, E), and (iii) Θ is a Bernoulli r.v. with success probability π ∈ (0, 1).
We denote by G = (Gt)t≥0 the filtration obtained by enlarging the observation filtration F with the

information about Θ; i.e., Gt := Ft ∨ σ(Θ) for every t ≥ 0, and introduce the likelihood ratio process

Lt = exp

(µ1 − µ0)(Xt −X0)−
[
µ2

1 − µ2
0

2
+ λ1 − λ0

]
t+

∑
0<Tn≤t

log
(
λ1

λ0

dν1

dν0
(Zn)

) , t ≥ 0.

Let P be a new probability measure on (Ω,G∞), whose restriction to each Gt, t ≥ 0 is defined in terms
of the Radon-Nikodym derivative

dP
dP0

∣∣∣∣
Gt

= ξt := 1{Θ=0} + 1{Θ=1}Lt, t ≥ 0. (1)

Under probability measure P defined by (1), we have the same setup as in the problem description.
Therefore, in the remainder we will work with the model constructed here.

Starting from any arbitrary but fixed initial state φ ∈ R+, let us define the process

Φ0 = φ and Φt = Φ0Lt, t ≥ 0. (2)

The Bayes theorem implies that

P{Θ = 1 | Ft}
P{Θ = 0 | Ft}

=
E0

[
ξt1{Θ=1} | Ft

]
E0

[
ξt1{Θ=0} | Ft

] =
LtP0{Θ = 1 | Ft}
P0{Θ = 0 | Ft}

=
π

1− π
Lt, t ≥ 0 P

π
1−π -a.s.
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Proposition 1. The Bayes risk Rτ,d(π) can be written as

Rτ,d(π) = b(1− π)P
π

1−π
0 {τ <∞}+ (1− π)E

π
1−π
0

[∫ τ

0
(1 + Φt)dt+ (aΦτ − b) 1{d=0,τ<∞}

]
, (3)

where Pφ0 is the probability P0 with Φ0 = φ, and Eφ0 is the expectation with respect to Pφ0 . If we define
d(t) := 1(b/a,∞)(Φt), t ≥ 0, then the pair (τ, d(τ)) belongs to ∆. We have Rτ,d(π) ≥ Rτ,d(τ)(π)
for every (τ, d) ∈ ∆ and π ∈ (0, 1), and the minimum Bayes risk U(π) an be written as U(π) ≡
inf(τ,d)∈∆Rτ,d(π) = b(1 − π) + (1 − π)V ( π

1−π ), π ∈ (0, 1) in terms of the value function V (·) of the
auxiliary optimal stopping problem

V (φ) := inf
τ∈F

Eφ0

[∫ τ

0
g(Φt)dt+ 1{τ<∞}h(Φτ )

]
, φ ≥ 0, (4)

where the running cost function g : R+ 7→ R and the terminal cost function h : R+ 7→ R are defined by
g(φ) := 1 + φ and h(φ) := −(aφ− b)−.

Let us denote the point process generated by (Tn, Zn)n≥1 with p((0, t]×B) =
∑∞

n=1 1(0,t]×B(Tn, Zn),
t ≥ 0. An application of Itô’s rule gives the dynamics of process L as

L0 = 1, and dLt = (µ1 − µ0)Lt(dXt − µ0dt)

+ Lt−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[p(dt× dz)− ν0(dz)λ0dt] , t ≥ 0.

Because of (2), the dynamics of process Φ becomes

Φ0 = φ, and dΦt = (µ1 − µ0)Φt(dXt − µ0dt)

+ Φt−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[p(dt× dz)− ν0(dz)λ0dt] , t ≥ 0,

If we define

Y k,φ
t := φ exp

{
(µ1 − µ0)(X

(k)
t −X

(k)
0 )−

[
µ2

1 − µ2
0

2
+ λ1 − λ0

]
t

}
, t ≥ 0, k ≥ 0, φ ≥ 0,

then the sample paths of the conditional odds-ratio process Φ can be decomposed into diffusion and
jump parts as in

Φt =


Y
k,ΦTk
t−Tk , if t ∈ [Tk, Tk+1) for some k ≥ 0,
λ1

λ0

dν1

dν0
(Zk+1)Y

k,ΦTk
Tk+1−Tk , if t = Tk+1 for some k ≥ 0.

(5)

The process Y k,φ is a diffusion with dynamics

Y k,φ
0 = φ, and dY k,φ

t = (µ1 − µ0)Y
k,φ
t (dX(k)

t − µ0dt) + (λ0 − λ1)Y
k,φ
t dt, t ≥ 0.

3 Jump operator and successive approximations
We will denote Y 0,Φ0 by Y Φ0 , which is a diffusion with dynamics

Y Φ0
0 = Φ0, dY Φ0

t = (λ0 − λ1)dt+ (µ1 − µ0)Y Φ0
t (dXt − µ0dt) t ≥ 0. (6)

and (P0,F)-infinitesimal generator (A0w)(φ) = (λ0 − λ1)φw′(φ) + 1
2(µ1 − µ0)2φ2w′′(φ) acting on

twice-continuously differentiable functions w : R+ 7→ R. For every bounded function w : R+ 7→ R, let

(Kw)(φ) :=
∫
E
w

(
λ1

λ0

dν1

dν0
(z)φ

)
ν0(dz), φ ∈ R+, (7)
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and the jump operator

(Jw)(φ) := inf
τ∈FX

Eφ0

[∫ τ

0
e−λ0t

[
g(Y Φ0

t ) + λ0(Kw)(Y Φ0
t )
]
dt+ e−λ0τh(Y Φ0

τ )
]
, φ ∈ R+, (8)

which is itself a discounted optimal stopping problem for the diffusion Y Φ0 in (6), with discount rate λ0,
running cost function g(·) + λ0(Kw)(·) and terminal cost function h(·).

Proposition 2. Let us define v0(·) := h(·) and vn(·) := (Jvn−1)(·), n ≥ 1. The sequence (vn(·))n≥0 is
decreasing, and the pointwise limit v∞(·) := limn→∞ vn(·) ≡ infn≥0 vn(·) exists. Every vn(·), n ≥ 0
and v∞(·) are nondecreasing, concave, and bounded between −b and h(·).

Proposition 3. The function v∞(·) is the largest solution of the equation v(·) = (Jv)(·) less than or
equal to h(·).

Theorem 1. The value function V (·) and the limit v∞(·) of successive approximations are the same.

4 Numerical algorithm and examples

In Figure 1, we describe a numerical algorithm to calculate the successive approximations vn(·), n ≥ 0
of the value function V (·) ≡ v∞(·) of the auxiliary optimal stopping problem in (4) and Bayes ε-
optimal decision rules for the Bayesian sequential binary hypothesis testing problem. In the examples
described below and illustrated in Figure 2, that algorithm is used to calculate the approximations vn(·),
n ≥ 0 until the maximum absolute difference between successive approximations is reduced below an
acceptable level.

Nine panels in Figure 2 display the approximate value functions and minimum Bayes risks corre-
sponding to nine examples. In each example, the observation process consists of a Brownian motion X
with drift µ and a simple Poisson process (Tn)n≥1 (i.e., marks Zn, n ≥ 1 are known and equal to one
almost surely) with arrival rate λ. Under the null hypothesis H0, we assume that the unknown drift and
arrival rates are equal to µ0 = 0 and λ0 = 1, respectively. We also assume that the costs of wrongly
choosing H0 and H1 are the same and equal to a = b = 0.5. However, drift rate µ1 and arrival rate λ1

under alternative hypothesis H1 are different in nine examples; drift rate µ1 takes values 2, 3, 4 along
three columns, respectively, and arrival rate λ1 takes values 7, 9, 11 along three rows, respectively. Each
panel is divided in two parts. The upper part shows the optimal Bayes risk U(·) on [0, 1] displayed on
the upper horizontal axis, and the lower part shows the value function V (·) of the auxiliary optimal
stopping problem in (4) on R+ displayed on the lower horizontal axis. Both U(·) and V (·) are plotted
with solid curves. These functions are compared with Up(·), Vp(·), UX(·), and VX(·), where Up(·) and
UX(·) are obtained by taking the infimum over the stopping times of smaller natural filtrations Fp and
FX of Poisson process and Brownian motion, respectively. On the other hand, Vp(·) and VX(·) are the
value functions of the optimal stopping problems analogous to (4); i.e.,

Vp(φ) := inf
τ∈Fp

Eφ0

[∫ τ

0
g(Φ(p)

t )dt+ 1{τ<∞}h(Φ
(p)
τ )
]
, φ ≥ 0,

VX(φ) := inf
τ∈FX

Eφ0

[∫ τ

0
g(Φ(X)

t )dt+ 1{τ<∞}h(Φ
(X)
τ )

]
, φ ≥ 0,

where

Φ
(p)
t :=

P{Θ ≤ t | Fpt }
P{Θ > t | Fpt }

and Φ
(X)
t :=

P{Θ ≤ t | FXt }
P{Θ > t | FXt }

for every t ≥ 0.

The functions Up(·), Vp(·) and UX(·), VX(·) are related each other in the same way as U(·), V (·)
are related. The differences in the Bayes risks Up(·), UX(·), and U(·) are due to the contributions of
observing the processesX and (Tn)n≥1 separately or simultaneously to the efforts to identify the correct
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Initialization Set v0(φ) = h(φ) and w(φ) = −b for every φ > 0. Calculate F (φ) = ψ(φ)/η(φ) = φα1−α0 for every
φ > 0. Set n = 1.

Step 1 Calculate

(Lvn)(ζ) =

(
Hvn − h

η

)
◦ F−1(ζ), ζ ≥ 0.

Step 2 Calculate critical boundaries ζ1[vn] and ζ2[vn], which are unique solutions of

(Lvn)′(ζ1[vn]) =
(Lvn)(ζ2[vn])− (Lvn)(ζ1[vn])

ζ2[vn]− ζ1[vn]
= (Lvn)′(ζ2[vn])

Recall that 0 < ζ1[w] ≤ ζ[vn] ≤ F (b/a) ≤ ζ2[vn] ≤ ζ2[w] <∞, and the lower bound ζ1[w] and upper bound ζ2[w] on
the critical boundaries ζ1[vn] and ζ2[vn] for n ∈ {1, 2, . . .} ∪ {∞} are useful to control the computer memory. Calculate
the smallest nonnegative concave majorant (Mvn)(·) of (Lvn)(·) on R+ by

(Mvn)(ζ) =



(Lvn)(ζ), if ζ ∈ [0, ζ1[vn]] ∪ [ζ2[vn],∞),

ζ2[vn]− ζ
ζ2[vn]− ζ1[vn]

(Lvn)(ζ1[vn])

+
ζ − ζ1[vn]

ζ2[vn]− ζ1[vn]
(Lvn)(ζ2[vn]),

if ζ ∈ (ζ1[vn], ζ2[vn]).

Step 3 Calculate φ1[vn] = F−1(ζ1[vn]) and φ2[vn] = F−1(ζ2[vn]) and

(Gvn)(φ) =



(Hvn)(φ)− h(φ), φ ∈ (0, φ1[vn]] ∪ [φ2[vn],∞),

(φ2[vn])α1−α0 − φα1−α0

(φ2[vn])α1−α0 − (φ1[vn])α1−α0
(Hvn − h)(φ1[vn])

+
φα1−α0 − (φ1[vn])α1−α0

(φ2[vn])α1−α0 − (φ1[vn])α1−α0
(Hvn − h)(φ2[vn]),

φ ∈ (φ1[vn], φ2[vn]).

Step 4 Calculate vn+1(φ) = (Jvn)(φ) = (Hvn)(φ)− (Gvn)(φ) for every φ > 0.
Step 5 If some stopping criterion has not yet been satisfied (e.g., the uniform bound bβn on ‖v∞ − vn‖ has not yet been

reduced below some desired error level), then set n to n+ 1 and go to Step 1, otherwise stop.
Outcome After the algorithm terminates with vn+1(·), φ1[vn], and φ2[vn],

1. we have vn+1(φ)− bβn+1 ≤ V (φ) ≤ vn+1(φ) for every φ > 0,
2. the stopping time τ̃ [vn] = inf{t ≥ 0; Φt /∈ (φ1[vn], φ2[vn])} is ε-optimal for every ε > bβn+1 for the auxiliary

optimal stopping problem in (4); i.e.,

V (φ) ≤ Eφ0

[∫ τ̃ [vn]

0

(1 + Φt)dt+ h(Φτ̃ [vn])

]
≤ V (φ) + bβn+1, φ > 0,

3. the decision rule (τ̃ [vn], d(τ̃ [vn])) is Bayes ε-optimal for every ε > bβn+1 for the Bayesian sequential binary
hypothesis testing problem ; i.e.,

U(π) ≤ Rτ̃ [vn],d(τ̃ [vn])(π) ≤ U(π) + bβn+1, π ∈ (0, 1).

Fig. 1. Numerical algorithm to solve the Bayesian sequential binary hypothesis testing problem.

hypothesis about the drift rate X and arrival rate of (Tn)n≥1. Sometimes, Poisson process observations
provide more information than Brownian motion observations as in (d), (e), (g), (h), and (i). Sometimes,
Brownian motion observations provide more information than Poisson process observations as in (a),
(b), and (f). In every case, however, observing both Poisson process and Brownian motion at the same
time provides more information, which is often significantly more than two processes provide separately,
as in (a), (b), (c), (d), (e), (f), and (i).

Intuitively, we expect the contributions of both information sources, observed separately or concur-
rently, to increase as µ1 and λ1 get farther away from µ0 = 0 and λ0 = 1, respectively, and the results
reported in Figure 2 support these expectations. Indeed, the Bayes risks Up(·) and U(·) shift downward
across along the rows, and UX(·) and U(·) do the same along the columns.
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Fig. 2. In all of nine examples above, λ0 = 1, µ0 = 0, and the cost parameters are a = b = 0.5. We also assume that jumps
are of unit size under both hypotheses.
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