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Abstract. Motivated by applications in bio and syndromic surveillance, this article is concerned with the problem of detecting
a change in the rate of Poisson distributions after taking into account the effects of population size.
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1 Introduction and Motivation
This work was motivated by a set of data regarding male thyroid cancer cases (with malignant behavior)
in New Mexico during 1973-2005, which has been studied before in the biosurveillance literature in
other contexts; see, for example, Kulldorff (2001). Figure 1 plots three different curves related to this
data set: (1) yearly total number of cancers with malignant behavior; (2) yearly population size (of males)
in New Mexico; and (3) yearly (crude) incidence rate per 100,000 (male) population.

For this data set, one obvious starting point is to investigate whether the yearly number of cancer
cases increases over time. Such a problem can be formulated as detecting a change in the mean (or in-
tensity or rate) of Poisson distributions, and the classical results in the sequential change-point detection
literature such as those in Lorden (1971) and Moustakides (1985) are applicable. Also refer to Peskir
and Shiryaev (2006).

From the biosurveillance viewpoint, a more interesting analysis goal of this data set is to determine
whether or not the risk for male thyroid cancer increases over time. The term risk in this context essen-
tially means that the probability of developing thyroid cancer in a given year, which can be characterized
by the number of incidence rate per 100,000 (male) population. This consideration inspires us to inves-
tigate the problem of detecting a change in the disease incidence rate after taking into account the effect
of population size.

2 Mathematical Formulation
A very simplified probability model of the above problem is the Poisson model in which one observes
independent two-dimensional random vectors (ln, Yn) over time n, where Yn has a Poisson distribution
of mean µn = lnλn. Here ln, Yn and λn can be thought of as the observed population size (in the units
of 100,000 population), the number of observed disease cases, and the (unobservable true) incidence
rate per 100,000 (male) population at the n-th year, respectively. Of course, in theory, it is better to
model the observation Yn’s by binomial distributions with mean lnλn, but it is well-known that the
binomial distribution can be approximated by a Poisson distribution with the same mean, provided that
the population size is large and the binomial probability parameter is small, so that the observed count
is small relative to the population size. The data in our motivated example satisfy this requirement
reasonably well, and thus the Poisson model is applicable.

In the context of sequential change-point detection problems, it is assumed that the λn’s, e.g., the
incidence rate per 100,000 (male) population, changes from one value λ0 to another value λ1 at some
unknown time ν, and we want to detect such a change as soon as possible if it occurs. Note that under
our setting, the ln’s (the population sizes) are observable, but their distributions are nuisance parameters
that are left unspecified, as we are only interested in detecting a change in λn’s.
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Fig. 1. A three set of time series data of male thyroid cancer in New Mexico during 1973-2005. Top: the left panel plots the
total number of male thyroid cancers (Y axis) over years (X axis), and the right panel illustrates the trend of male population
(Y axis). Bottom: the plot illustrates the crude incidence per 100,000 population (Y axis) over years (X axis).

Mathematically, a detection scheme is a stopping time T with respect to the the observed data
{(ln, Yn)}n≥1. That is, the decision {T = n} only depends on the first n observations, or more
rigourously, the event {T = n} belongs to the sigma-algebra Fn, which is assumed to be generated
by the first n observations. Denote by Pν and Eν the probability measure and expectation when the
change in the λn’s occurs at time n. Also denote by P∞ and E∞ the probability measure and expecta-
tion when there are no changes in the λn’s.

A standard minimax formulation is to find a detection scheme T that minimizes the detection delay
in Lorden (1971)

E(T ) = sup
ν≥1

ess sup Eν

(
(T − ν + 1)+|Fn

)

subject to the constraint

E∞(T ) ≥ γ, (1)

where γ is a pre-specified (typically large) constant to control the false alarm rate of the scheme.

3 Methodology
In sequential change-point detection, or more generally in statistics, a basic tool to construct statistical
tests or procedures is the generalized/maximum likelihood ratios (GLR) method. For the sequential
change-point detection problem, it can be thought of testing the null hypothesis

H0 : ν = ∞ (no change)
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versus the composite alternative hypothesis

H1 : 1 ≤ ν < ∞ (a change occurs),

and thus the logarithm of the GLR statistic of the first n observations, {(li, Yi)}n
i=1 is given by

max
1≤ν<∞

dPν

dP∞

(
(l1, Y1), · · · , (ln, Yn)

)
.

Note that when µj = ljλj (with j = 0 or 1) is the true value (of the Poisson mean), the marginal density

function of (li, Yi) is f(li, Yi|λj) = h(li)
e−liλj (liλj)

Yi

(Yi)!
, where h(·) is the distribution of li’s. Hence,

under our setting, the logarithm of the GLR statistic becomes

Wn = max
1≤τ≤n+1

n∑

i=τ

log
f(li, Yi|λ1)
f(li, Yi|λ0)

= max
1≤τ≤n+1

n∑

i=τ

[
Yi log

λ1

λ0
− li(λ1 − λ0)

]
, (2)

where
∑n

i=n+1 = 0 as conventional, and the GLR detection scheme raises an alarm at time

TGLR(a) = first n ≥ 1 such that Wn ≥ a, (3)

for some constant a. It is easy to show that Wn in (2) also enjoys a recursive formula of the classical
CUSUM statistics: Wn = max

{
0,Wn−1 +

[
Yn log λ1

λ0
− ln(λ1 − λ0)

]}
.

Besides the GLR detection scheme in (3), in this article we also consider two alternative detection
schemes. The first one is based on Yn/ln, which is a natural estimator of the risk or the disease rate per
100,000 population. If we pretend that Yn/ln is Poisson distributed with mean λn (while this is not true
under our setting, we can still use it to construct detection schemes), then the corresponding CUSUM
statistic is

Ŵn = max
1≤τ≤n+1

n∑

i=τ

[Yi

li
log

λ1

λ0
− (λ1 − λ0)

]
. (4)

A comparison between Wn in (2) and Ŵn in (4) shows that Ŵn is a weighted version of Wn by nor-
malizing the population sizes ln’s for each individual log-likelihood ratio statistic. Thus, we call the
following procedure as weighted likelihood ratio (WLR) procedure:

TWLR(b) = first n ≥ 1 such that Ŵn ≥ b, (5)

for some constant b.
The second alternative procedure we propose is to use the GLR-based statistic Wn in (2) but with

adaptive thresholds that take into account of population sizes. Ideally, one would like to use the opti-
mal thresholds or boundaries, say, by some Bayesian or non-Bayesian arguments, but such boundaries
seem to be too complicated. Here we simply use the simple linear form of adaptive thresholds: lnc.
Specifically, the proposed adaptive threshold method (ATM) raises an alarm at time

TATM (c) = first n ≥ 1 such that Wn ≥ lnc, (6)

for some constant c > 0.
We should point out that when the population sizes ln’s are a constant l > 0, the above three detection

schemes, TGLR(a), TWLR(b) and TATM (c), are equivalent (if a = lb = lc.) Moreover, it is well-known
from Moustakides (1986) that they are (exactly) optimal in the problem of detecting a change in the
mean (intensity) λi’s of Poisson distribution from λ0 to λ1.

However, when the population sizes ln’s are not constant, then the above three detection schemes are
not equivalent. Moreover, the theorem cannot be literally applied to establishing the optimality properties
of Page’s CUSUM procedure.
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4 Theoretical Results: Step Function For Population Sizes
It is very challenging to investigate the change-point detection problem beyond the simplest i.i.d. models.
In order to be tractable in theory as well as shed light on the practical situations, in this section (only),
we consider the scenario when population sizes are modeled by a step function:

ln =
{

l(0), if n ≤ ω

l(1), if n ≥ ω
,

where ω is observable (since the ln’s are observable).
Intuitively, if ω >> γ in the false alarm constraint (1), e.g., ω = ∞, then the problem is asymptoti-

cally equivalent to the scenario with the constant population size l(0). On the other hand, if ω << log γ,
e.g., ω = 1, then the problem is asymptotically equivalent to the scenario with the constant population
size l(1). Also refer to Baron and Tartakovsky (2006).

In this article we are interested in the scenario when ω >> log γ but ω << γ. Such scenario is
motivated from the growth curve (logistic) model for population size (see Section 5 below), which can
be thought of as a smooth version of the step function.

When the population sizes are modeled by the step function, for our proposed detection schemes,
two kind of changes are specially interesting: one is when ν = 1 and the other is when ν = ω. Hence,
motivated by Lorden’s worst-case detection delay, we focus on the following detection delays:

D(T ) = max
[
E1(T ), ess sup Eω

(
(T − ω + 1)+|Fω

)]
.

The asymptotic properties of the proposed three detection schemes are summarized in the following
theorem:

Theorem 1. Assume that the population sizes ln’s follow the step function above, and assume that ω =
ωγ satisfies log γ << ω << γ. Subject to the false alarm constraint in (1), we have

D[TGLR(a)] = (1 + o(1))
log γ

min{l(0), l(1)}I(λ1, λ0)

D[TWLR(b)] = (1 + o(1))
log γ

l(1)I(λ1, λ0)

D[TATM (c)] = (1 + o(1))
log γ

l(1)I(λ1, λ0)
,

as γ −→∞, where

I(λ1, λ0) = λ1 log
λ1

λ0
− (λ1 − λ0).

From the theorem, it is interesting to note that the detection delay of the GLR procedure TGLR(a) in
(3) is asymptotically smaller than that of the TWLR(b) in (5) or TATM (c) in (6) if and only if l(0) > l(1).
In particular, this indicates that the GLR procedure TGLR(a) may not be efficient if the population size
increases, but it seems to be efficient if the population sizes decrease.

5 Example Revisited
We revisited the male thyroid data in New Mexico, and apply the proposed three detection schemes to
the cancer data for the illustration purpose.

5.1 Model for Population Growth
In the literature, it is common (e.g., Pinheiro and Douglas, 2000) to model the growth curve by the
following logistic model:

li = ψ(i) + εi =
φ1

1 + exp[−(i− φ2)/φ3]
+ εi, (7)
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where E[εi] = 0 and V ar[εi] = σ2. Here φ1 indicates an asymptotic upper limit of population size, φ2

the middle point of t in the S-shaped curve, and φ3 the scale adjustment of time periods.
In our specific application of New Mexico, we fit this model to the population sizes in New Mexico

by a nonlinear least-squares method (we treat year 1972 as time 0, and the population sizes are in the
units of 100,000). Using the statistical software R version 2.8.0, the estimated parameters of the logistic
models for the population sizes are

Table 1. Result of estimated parameters
Parameter Estimate

φ1 13.8065 ± 0.9552
φ2 11.8532 ± 3.7438
φ3 26.4037 ± 2.3127
σ 0.0907

After plotting the actual observed population sizes and the estimated growth curves in New Mexico
during 1973-2005, we find that the two curves are very close to each other, implying that the logistic
model is reasonable.

5.2 Parameters in Detection Schemes

To specify the pre-change rate λ0 and the post-change rate λ1, we consider the time period of 1973-1983
as training periods: the pre-change rate λ0 and the post-change rate λ1 are estimated by the median and
the maximum of crude incidence per 100,000 during 1973-1983, respectively. For our data, we have
λ0 = 2.4 and λ1 = 3.8.

We also assume that γ = 300 in the false alarm constraint (1), i.e., on average we want all detection
schemes to raise a false alarm at least once every 300 years if the pre-change rate is λ0 = 2.4. Of course,
the choice of 300 is intended only for an illustration, and the idea can be easily extended to any other
choices of false alarm constraints.

In order to satisfy the false alarm constraint (1) with γ = 300, for the three detection schemes,
TGLR(a) in (3), TWLR(b) in (5) and TATM (c) in (6), numerical simulations show that the corresponding
threshold values are a = 3.6870, b = 0.2975, and c = 0.2975 (based on 100,000 replicates).

5.3 Detection Delays

If we control the false alarm constraint γ = 300, then the WLR and ATM procedures, TWLR(b) and
TATM (c) trigger an alarm in 1993, and the GLR procedure TGLR(a) raises an alarm until 1997. See
Figure 2. Numerical simulations show that we reach the same conclusion if we control the false alarm
constraint γ = 100 or 200.

In addition, for the purpose of comparison, for each of these three detection schemes, we also sim-
ulate ess sup

[
Eν

(
T − ν

∣∣∣Fν , T ≥ ν
)]

at different change-point ν. The simulated detection delays are
based on 50,000 replicates, and are illustrated in Figure 3.

From the plot, it is interesting to note that the GLR detection scheme TGLR(a) performs poorly if
the change-point ν occurs at an earlier stage, but the properties of these three methods are similar if the
change-point ν occurs at a very late stage. In fact, for the GLR detection scheme TGLR(a), its detection
delays ess sup

[
Eν

(
T − ν

∣∣∣Fν , T ≥ ν
)]

seem to be decreasing as a function of change-point ν. On the
other hands, the detection schemes TWLR(b) and TATM (c) seem to be “equalizer rule” in the sense
that ess sup

[
Eν

(
T − ν

∣∣∣Fν , T ≥ ν
)]

is same for different values of change-point ν. The property of
“equalizer rule” is crucial to establish the exact optimality of the CUSUM procedure in the simplest
i.i.d. models, and our results suggest that the GLR detection scheme TGLR(a) may not be efficient when
the population sizes vary, especially when they increase over the years.
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Fig. 2. Left Panel plots the GLR statistics Wn, where the solid line and the dotted line indicate the boundaries of TGLR(a)
and TATM (c), respectively. Right Panel is for the WLR statistic Ŵn, and the solid line is the boundary of TWLR(b). Both
TWLR(b) and TATM (c) raise an alarm in year 1993, whereas TGLR(a) raises an alarm in year 1997.

Fig. 3. The simulated detection delays of three detection schemes with respect to different values of true change-point ν. The
simulations show that the GLR detection scheme TGLR(a) performs poorly if the change-point ν occurs at an earlier stage,
but the properties of these three methods are similar if the change-point ν occurs at a very late stage.
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