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In this report the problem of sequential detection and estimation of
change-points is considered. The sense of this problem is as follows: in
practice after raising an alarm signal about a change it is often required to
divide the whole obtained sequential sample into subsamples of observations
before and after an unknown change-point. In this report asymptotically
optimal methods are proposed for sequential detection and estimation of a
change-point in this problem.

On the probability space (Ω,F , P ) let us consider the following model of
observations:

x(n) = a+ hI(n > m) + ξn, (1)

where m is an unknown change-point; h ≥ δ > |a| is an unknown change
in the mathematical expectation of a centered random sequence ξn (Eξn =
0, Eξ2n = σ2) which satisfies the uniform Cramer and ψ-mixing conditions:

- the uniform Cramer’s condition: for every i = 1, 2, . . .

∃H > 0 : sup
i
E exp(tξi) <∞, |t| < H

- ψ-mixing condition:

ψ(n) = sup
t≥1

sup
A∈Ft

1,B∈F∞t+n, P (A)P (B) 6=0

| P (AB)
P (A)P (B)

− 1| → 0 as n→∞,

where F t
1 = σ{ξ1, . . . , ξt}, F∞t+n = σ{ξt+n, ξt+n+1, . . . }.

For sequential detection of the change-point m, let us consider the
following nonparametric cumulative sums (CUSUM) method:

yn = (yn−1 + x(n))+, y0 ≡ 0, (2)

where b+ = max(b, 0).
The decision function of CUSUM method is dN (n) = I(yn > N), where

N is the threshold of detection which coincides with a “large parameter" N
for CUSUM method.

Denote by P0, Pm measures corresponding to a sequence of observations
without a change-point and with the change-point m, respectively. We in-
troduce the following performance measures of sequential change-point de-
tection:

- the supremal probability of a “false decision":

αN = sup
n

P0{dN (n) = 1} (3)
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- the stopping time

τN = inf{n : dN (n) = 1}. (4)

For the nonparametric CUSUM method, the following theorem holds

Theorem 1.
Suppose the sequence of observations satisfies the uniform Cramer and

ψ-mixing conditions. Then for any a < 0 and any m > 0:

αN ≤ L1 exp(−L2
N |a|
σ2

), (5)

where L1, L2 > 0 depend on parameters of Cramer’s and ψ-mixing conditions
only and for any h > |a|, ε > 0 and γN = (τN −m)+/N :

lim
N→∞

N−1 lnPm{|γN − 1
h− |a|

| > ε |(τN > m)} ≤ − ε2

2σ2
(h− |a|)3. (6)

From this theorem it follows that the normalized delay time γN tends
a.s. to (h− |a|)−1 as N →∞ with the rate of convergence estimated in (6).

For estimation of a detected change-point, we use the retrospective
sample of the last M observations: {x(τN −M+1), . . . , x(τN )}. The volume
M of this sample can be obtained from (6):

M =
N

δ − |a|
+ σ

√
2N

| lnα|1/2

(δ − |a|)3/2
. (7)

This choice of M guarantees that the retrospective sample “covers" the true
change-point m with the confidence probability 1−α for any 0 < α < 1. We

can choose α = exp(−βN) for β > 0 and thenM = N(
1

δ − |a|
+

σ(2β)1/2

(δ − |a|)3/2
).

So Pm(Hβ) ≥ 1− exp(−βN), where Hβ is the hypothesis that the retro-
spective sample contains the true change-point m.

For estimation of the change-point m, the following statistic is used:

TM (n) =

√
n(M − n)

M
(
1
n

n∑
i=1

x(i+ τN −M)− 1
M − n

M∑
i=n+1

x(i+ τN −M))

(8)
for n = 1, . . . ,M .

Then the estimate of the change-point m can be constructed as follows:
m̂ = n̂+ τN −M , where n̂ is the minimal point of the set argmax

n
|TN (n)|.

Define the following values: ρ = 1 − (τN −m)+

M
and ρ̂ =

n̂

M
. Then the

following theorem holds:
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Theorem 2.
Suppose the sequence of observations satisfies the uniform Cramer and

ψ-mixing conditions. Then for any 0 < ε < 1:

Pm{|ρ̂− ρ| > ε|Hβ ∩ {τN > m}} ≤ L1 exp(−L2ε
2M), (9)

where the constants L1, L2 > 0 do not depend on M .

From this theorem it follows that the proposed estimate m̂ will be in the
[εM ] neighborhood of the true change-point m with the probability increas-
ing to 1 as M →∞ for any 0 < ε < 1.

Asymptotic optimality
The proposed methods are asymptotically optimal for sequential detec-

tion and estimation of a change-point. We prove this fact for a sequence of
independent r.v.’s X = {x1, x2, . . . } with the d.f.

f(xn) =
{

f0(xn), n ≤ m
f1(xn), n > m

At any step of decision making, we test the null hypothesis H0 of no
change in the d.f. of observations against the alternative H1 of a change
occurred in this d.f. Suppose a certain method with the decision function
dC(·) (depending on some “large parameter" C) is used:

dC(·) =
{

0, assume H0 and continue
1, assume H1 and stop

Consider the following characteristics:
1) Supremal probability of a false decision:

αC = sup
n

P0{dC(n) = 1}, (10)

2) Stopping time τC and the normed delay time γC :

τC = inf{n : dC(n) = 1}, γC = (τC −m)+/C. (11)

Then for any m ≥ 1 and C → ∞, the following asymptotical inequality
holds true:

J · Em(γC |τC > m) ≥ (1 + o(1))
| ln(αC(T (C) +m))|

C
, (12)

where J =
∫
f1(x) ln

f1(x)
f0(x)

dx and

T (C) = min(n :
∞∑

i=n

P0(τC = i) ≤ αC).
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A method of sequential change-point detection is called the 1st order
asymptotically optimal if the equality sign in (12) is attained for this method
as C → ∞. For the proposed nonparametric CUSUM test, C ≡ N . This
test is the 1st order asymptotically optimal.

Besides the 1st order asymptotical optimality, we consider the 2nd order
asymptotical optimality of sequential tests in the class of methods for which
γC → γ(θ) in probability as C →∞, where θ is the parameter of the d.f. of
observations after the change-point m, i.e.:

f(xn) =
{

f0(xn), n ≤ m
fθ(xn), n > m

Suppose I(θ) =
∫ (f

′
θ(z))

2

fθ(z)
dz. Then for ε→ 0 the following asymptotical

inequality holds true:

lim
C→∞

C−1 lnPm{|γC − γ(θ)| > ε|τC > m} ≥ −ε
2(1 + o(1))
2[γ′(θ)]2

γ(θ)I(θ). (13)

A method of sequential change-point detection is called the 2nd order as-
ymptotically optimal if the equality sign in (13) is attained for this method
as C →∞. The nonparametric CUSUM test is the 2nd order asymptotically
optimal.

The 2nd order asymptotical optimality in sequential detection is closely
connected with the asymptotical optimality of change-point estimation at
the 2nd stage of the proposed two-stage procedure.

Monte-Carlo tests
In this section results of a simulation study of the proposed methods are

presented. The following examples were studied:
1) Change in mean: independent Gaussian r.v.’s with an unknown change

in the mathematical expectation
2) Change in dispersion: independent Gaussian r.v.’s with an unknown

change in dispersion

1) Change in mean
The sequence of Gaussian observations X = (x(1), x(2), ...) with the

change-point m = 1000 was modeled. Both m and a change in mean h
(N(0, 1) → N(h, 1)) were unknown to the proposed algorithm.

For detection of a change-point, the nonparametric CUSUM test was
used:

yn = (yn−1 + x(n) + a)+ > N, y0 = 0,

The parameters of this test were chosen as follows: N = 12, a =
−0.5. The supremal probability of a false decision for these parameters
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is exp(−2|a|N/σ2) = exp(−12) = 6.14∗10−6 and corresponds to the average
time before a "false alarm" E0 τ = 162750.

Let τ = inf{n ≥ 1 : dN = 1} be the instant when the change was
detected. Then Emτ−m is the average delay time in change-point detection.
Besides the average delay time, we compute the value σ(τ −m) - the square
root of the dispersion of the delay time.

At the 2nd stage we estimate the change-point using the retrospective
sample of the last M observations. The choice of M is made by formula (7)
for α = 0.05. Here β = 0.25 and for N = 12, a = −0.5 and δ = 0.55, we
obtain M = 1000.

In experiments the following measure of the estimation error was com-
puted:

∆ = (
1

k − 1

k∑
i=1

(m̂k −m)2)1/2,

where k = 5000 is the number of independent trials.
The results obtained are reported in Table 1.

Table 1.
h 0.55 0.6 0.8 1.0 1.5 2.0 2.5

CUSUM Emτ −m 113.1 82.1 36.4 23.3 12.2 8.2 5.9
σ(τ −m) 88.5 61.5 18.4 12.5 3.8 2.9 1.3

K-S ∆ 79.3 45.5 13.9 13.5 4.6 3.9 2.1

2) Change in dispersion
In this group of tests the following model of observations was consid-

ered: the sequence of i.r.v.’s X = (x(1), x(2), ...) with the change-point
m = 1000. The d.f. of observations changes at the instant m = 1000:
N(0, 1) → N(0, (1 + h)2). Both m and h were unknown to the algorithm.

For detection of the change-point m, the nonparametric CUSUM test
was used:

yn = (yn−1 + x2(n) + a)+ > N, y0 = 0.

The parameters of this test were chosen as follows: N = 20, a =
−1.25. The supremal probability of a false decision for these parameters
is exp(−10) = 4.54 ∗ 10−5 and corresponds to the average time before a
"false alarm" E0 τ = 22026.

The choice of M is made by formula (7) for α = 0.05. Here β = 0.25
and for N = 20, a = −1.25 and δ = 1.69, we obtain M = 150. Results are
presented in Table 2.

Table 2.
h 0.3 0.4 0.5 0.7 0.9 1.0

CUSUM Emτ −m 65.7 37.8 26.7 15.9 10.8 9.4
σ(τ −m) 54.3 28.3 18.9 10.4 7.1 6.1

K-S ∆ 70.9 37.1 24.5 19.3 12.5 11.6
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