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Abstract. We propose a generalized likelihood statistic for monitoring a multi-channel system that is composed of a collection
of independent and identically distributed processes. The statistic may be used to monitor the system in order to detect a
potential local divergence from the null distribution in a sub-collection of the processes.

A motivating application is the detection of inheritable DNA Copy Number Variation in samples that are genotyped using
modern microchip technologies. The statistic can be used in this application in order to carry out off-line scanning. Sequential
on-line monitoring schemes for a change-point in a sub-collection of processes are proposed based on the same statistic.

The null distribution of the resulting off-line scanning statistic is analyzed using a likelihood ratio identity and a
localization argument. The approximation of the distribution of the off-line procedure is used in order to characterize the
distribution of the sequential stopping rules.
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1 Introduction
The classical theory of change-point detection is usually introduced in the context of a sequence of
observations X1, X2, . . . , Xn, . . .. These observations are taken to be univariate and their distribution
characterized by a small number of parameters. The main split in the literature of change-point detection
is between sequential and non-sequential, or retrospective, inference. In the former it is assumed that the
system is monitored on-line and the main goal is to detect a change in the regime as soon as possible
after it took place. The statistical issue is the construction of an appropriate stopping rule, typically
of the form of some monitoring sequence exceeding an appropriate threshold, and the investigation of
characteristics of the distribution of the stopping rule. In the latter one assumes an off-line monitoring.
The entire sequence of observations is given and the goal is to estimate locations of change-points and
the distribution of the system between these points.

On the technical level, with respect to the analysis of the probabilistic characteristics of change-point
detection tools, the split between on-line and off-line settings is less pronounced. One of the goals of
this paper is to demonstare that the computation of the null characteristics can be carried out for both
off- and on-line procedures using the same tool. This phenomena may come as a surprise if we recall
that the null characteristics are measured in the context of off-line problems by the consideration of
probability of false alarms. On the other hand, early stopping in on-line monitoring is usually controlled
via the expectation of the stopping rule. Nonetheless, a carefull examination will reveal that in both cases
the characteristics may be formulated as functionals of random fields of likelihood ratios. If the random
fields are properly defined then one may obtain similar forms for the functionals involved. Consequently,
computations that are conducted in one context are relevant to the other context, and vice versa.

The key scenario we would like to pursue in this paper is one where a system is examined by several,
possible a large number of, independent and identically distributed observational processes. At the time
of change some of these processes may be affected while others are not. Yet, like in the classical setting,
the goal in the case of sequential detection is to raise an alarm as soon as possible after the change or, in
the case of prospective change-point inference, to test and estimate the change.

A naı̈ve approach may consider the application of classical procedure to each of the observational
processes separately. Hence, for example, one may raise an alarm if a change is detected in any of the
observational processes. However, such an approach does not take into account the cumulative effect of
the change on several processes at once and is necessarily less efficient. A more satisfactory solution
will combine the information from all sequences to produce a single monitoring process.



2 Yakir

A natural method for the construction of a monitoring statistic is to apply the same principles that
are used in the classical setting in order to produce tools for dealing with this more complex setting.
Hence, one may consider the subset of processes being affected by the change and/or the structure of the
change as yet another unknown parameter that enters into the definition of the random field. Plugging
in maximum-likelihood estimates for these unknown will produce generalized likelihood ratio statistics.
If the location of change-points is treated in the same way then one obtains the Cusum statistics. The
Shiryaev-Roberts statistic is constructed by the summation of likelihood ratios over the locations of the
change instead of selecting the maximizer.

The main application of multi-channel change-point detection that will be examined in this paper
is related to the problem of detecting DNA Copy-Number Variation. One type of variation that may be
found in the genome is the presence or absence of an entire segment of the DNA molecule. Modern
microchip technology enables the measurement of the entire genome over hundreds of thousands loca-
tions in the attempt to identify such segments. The intensity of the measurement at each of the location
depends on the number of copies of the segment the person has (2, if there is no variation, or a different
number if there is) but it is subject to random noise. Yet, since absence or access of segments may be
an inheritable trait it is expected to be found at a proportion of subjects. Consequently, it was proposed
to combine the measurements of a sample in order to increase the chances of detection (Zhang et al.,
2008). The discussion in this paper is in response to the statistical approach that was proposed in that
paper for construction of the combined monitoring sequence.

A different approach for combining information from a multi-channel process to produce a monitor-
ing sequence was proposed in Mei (2008) in the sequential context. The proposal we make in the off-line
scenario of DNA copy-number variation may yield an alternative approach for producing a monitoring
sequence in the on-line setting.

Poisson approximations and computations based on measure transformation may be used in order to
assess the null characteristics of our procedure in both off- and on-line setting. We describe the outcomes
of these assessments and outline the approach for obtaining them. The analysis is specified to the case
where the observations are normally distributed. Generalizations to other exponential families can be
carried out along the lines of the proofs presented here.

In the next section we present the off-line monitoring statistic that emerges from the consideration
of generalized likelihood-ratios statistics and give the resulting sequential Cusum and Shiryaev-Roberts
procedure. In the last section a Poisson approximation is applied in order to obtain the exponential limit
for the distribution of the tail of the monitoring statistic in the off-line setting and for the distribution of
the stopping time in the on-line scenario. In the next to last section measure-transformation techniques
are applied in order to obtain the rate of the exponential limit.

2 Generalized likelihood ratio statistics
Let us formulate a simple model of multi-channel monitoring in the context of testing for a shift from
the target number of DNA copies.

Consider an array of independent normal observations {Xij}, for subjects 1 ≤ i ≤ n and locations
1 ≤ j ≤ m. The target is to detect the possibility that for some of the subjects the mean level is shifted
over some interval. Specifically, consider testing that the shift in average intensity, if occurred, is to a
given mean level δ. Given an interval t = [t1, t2] of loci and a sub-collectionK ⊂ {1, · · · , n} of subjects
the log likelihood ratio statistic for testing shift to δ for the given interval and sub-collection is

`(t,K) =
∑

i∈K

t2∑

j=t1

[δXij − δ2/2] =
∑

i∈K
`δi (t) .

The sub-collection K and the interval t are a-priori unknown. Maximization with respect to K over all
subsets produces

max
K

∑

i∈K
`i(t) =

n∑

i=1

[`δi (t)]
+ = Yt ,
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where [`δi (t)]
+ is the positive part of `δi (t). The generalized log-likelihood statistic is maxt Yt, which

is the statistic we propose. Two-sided alternatives may be handled by the addition of a term associated
with the positive part of a likelihood ratio for testing for a negative shift.

In Zhang et al. (2008) a similar statistic is proposed. Specifically, they considered the subject-specific
standardized sums Zi(t) =

∑t2
j=t1

Xij/
√
t2 − t1 and use the sum of functions of these standardized

sums: Ut =
∑n

i=1 g(Zi(t)) as the basis for scanning. Again, a variation is detected whenever maxt Ut
crosses a threshold. For the case of the chi-square statistic, which corresponds to g(z) = z2, they
provided analytical approximation of the associated p-value. However, their recommendation is to use
other functions g that give less weight to smaller values of Zi(t), since such values are more likely to be
associated with random noise.

From a statistical prospective their chi-square statistic may emerge as a score statistic. Accordingly,
a derivative with respect to δ is taken for each subject separately and a subject-specific maximum likeli-
hood estimate of that parameter is plugged in. The underlying methodological concept assumes subject-
specific alternative intensities δi and these intensities are considered in the context of local alternatives.
In our approach, on the other hand, a common alternative rate is set for all subjects.

The formulation of our proposal implicitly assume fixed alternatives. An equivalent formulation
that is associated with local alternatives may set a target value of δ/

√
n. Consequently, one obtains

Yt =
∑n

i=1[δZi(t)−δ2/2]+. Thus, our statistic can be considered as a member in the family of statistics
proposed in Zhang et al. (2008) that sets g(z) = [δz − δ2/2]+ for one-sided alternatives and g(z) =
[δz − δ2/2]+ + [−δz − δ2/2]+ for two-sided ones. Observe that these functions give zero weight for
small values of the standardized sums.

A sequential approach for dealing with a similar type of multi-channel monitoring is discussed
in Mei (2008). Motivated by the Cusum approach Mei proposes to use as the monitoring statistic
computed at time t2 the statistic M(t2) = maxK

∑
i∈K maxt1 `

δ
i (t). The associated stopping time

declares a change once this process crosses the threshold logA. In contrast, we may propose to use
Y (t2) = maxt1 maxK

∑
i∈K `

δ
i (t) = maxt1 Yt instead and stop once a threshold is crossed. Both

statistics can be interpreted as generalized likelihood ratio statistics that are based on the information
collected up to time t2. The difference between these two statistics is that the latter assumed a common
change-point for all subjects that are affected by the change whereas the former opens the door to the
possibility of subject-specific locations of the change. Hence, the terms that enter the sum are produced
by estimating for each subject its private time of change.

An alternative to the statistic Y (t2), which is motivated by the Cusum approach, is the statistic
[
∑

t1
exp{θYt}]1/θ = R(t2), which is motivated by the Shiryaev-Roberts approach. The constant θ that

is used in the definition is described in the next section. Again, a change is declared once the statistic
crosses a threshold.

In the next two sections we deal with the asymptotic distribution of the off-line scanning statistic
and the sequential stopping times that emerges from the on-line formulation of our procedure. In the
next section we consider the probabilities P(maxt Yt ≥ logA) = P(maxt2≤m Y (t2) ≥ logA) and
P(maxt2≤mR(t2) ≥ A) . In the following section we use the results on the probabilities and a Poisson
approximation in order to assess the null distribution of the rescaled change-point detection stopping
time.

3 The rate of false detection

The discussion in this section is based on Sections 5 and 6 of Siegmund, Yakir and Zhang (2008).
Let n, the number of observational processes, be proportional to logA. We will consider scanning

statistics with a restricted window widthw = c logA. Consequently, t2−t1 ≤ w. For any such interval t
one may consider a likelihood ratio exp{θYt−nψ(θ)}, where ψ(θ) = logE exp{θg(Z)}, Z ∼ N(0, 1),
and θ is selected by solving the equation ψ̇(θ) = (logA)/n. A likelihood ratio identity, which is based
on transforming the null distribution to the measure determined by the summation of likelihood ratios
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for all t ⊂ [1,m], t2 − t1 ≤ w, will produce the representation

P
(
max
t
Yt ≥ logA

)
=

[ψ̇(θ)]1/2

[logA]1/2
1

Aθ−ψ(θ)/ψ̇(θ)

∑
t

√
nEt

[
(Mt/St)e−

˜̀
t−logMt ; ˜̀

t + logMt ≥ 0
]
,

where ˜̀
t =

∑n
i=1 θ[g(Zi(t))− ψ̇(θ)] converges to a Gaussian limit and the two local terms are given by

St =
∑

τ exp{∑n
i=1 θ[g(Zi(τ))− g(Zi(t))]} and Mt = maxτ exp{∑n

i=1 θ[g(Zi(τ))− g(Zi(t))]}.
We would like to apply Theorem 5.1 of Siegmund, Yakir and Zhang (2008) and the analysis given

in Section 5 of that paper. Unfortunately, that cannot be carried out directly, since it is assumed for the
analysis of the local terms that the function g(z) is twice differentiable, which is not the case in our
procedure. However, for the one-sided alternative we can approximate the function g(z) by the smooth
function γ(z) = γn(z) = δ

∫ z−δ/2
−∞ Φ

(
yn/ε

)
dy and a similar approximation can be used for two-sided

alternatives. Observe that maxz |g(z)− γ(z)| = γ(δ/2) = δε/
(
n
√

2π). It follows that the local process
associated with g(z) that enters into the definition of the local termsMt and St may be approximated by
the parallel local terms created by the use of γ.

Following the proof in Section 5.1 of Siegmund, Yakir and Zhang (2008) for t of length proportional
to n and taking ε to zero will produce

√
nEt

[
(Mt/St)e−

˜̀
t−logMt ; ˜̀

t + logMt ≥ 0
] ≈ {2πθ2ψ̈(θ)}−1/2

[
µ(t)ν

(
[2µ(t)]1/2

)]2
,

where

µ(t) =
θ2n

2(t2 − t1)

∫ ∞

δ/2
eθz−ψ(θ)φ(z)dz ,

φ(z) is the density of the standard normal distribution and ν(·) is a function associated with the Laplace
transform of the overshoot of a normal random walk crossing a threshold. See page 112 of Siegmund
and Yakir (2007).

The summation with respect to t in the representation of the probability of detection may be approx-
imated by an integral of the approximation of the local expectation. Changing the variable of integration
to x = µ(t) will result in the approximation

P
(
max
t
Yt ≥ logA

)
= P

(
max
t2≤m

Y (t2) ≥ logA
) ≈ λCS · [m/f(A)] (1)

where f(A) = Aθ−ψ(θ)/ψ̇(θ){logA}−1/2, x0(w) = µ(t) = (θ2n/2w)
∫∞
δ/2 e

θz−ψ(θ)φ(z)dz , and

λCS =
θ

{8πψ̇(θ)ψ̈(θ)}1/2
×

∫ ∞

δ/2
eθz−ψ(θ)φ(z)dz ×

∫ ∞

x0(w)

[
ν
({2x}1/2

)]2
dx .

Essentially the same type of analysis will lead to a similar type of approximation for the Shiryaev-
Roberts procedure:

P
(

max
t2≤m

R(t2) ≥ A
) ≈ λSR · [m/f(A)] (2)

for

λSR =
θ

{8πψ̇(θ)ψ̈(θ)}1/2
×

∫ ∞

δ/2
eθz−ψ(θ)φ(z)dz ×

∫ ∞

x0(w)
x−1ν

({2x}1/2
)
dx .

4 Approximating the null distribution of the stopping rule

Let us define the (window-restricted) Cusum changepoint detection ruleNCS = inf{t2 : Y (t2) ≥ logA},
to which we attach the asymptotic rate λCS. Likewise, define the Shiryaev-Roberts detection rule NSR =
inf{t2 : R(t2) ≥ A} with the attached rate λSR. Most of the statements below will be valid to both
stopping rules and will use an abstract NA and an abstract rate λ in their formulation.
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The goal of this section is to demonstrate that for a large A the null distribution of NA/f(A) is
approximately exponential with rate λ and the collection of stopping rules {NA/f(A)}, indexed by
A, is uniformly integrable. The combination of these two statements implies that E[NA] ≈ f(A)/λ.
Consequently, if a stopping rule with a target null expectation B is required one may use the threshold
A = f−1(λB), which will asymptotically produce the target.

The analysis of the distribution of the stopping time is based on the discussion in the previous section
and on the application a Poisson approximation. Denote the indicator of the event B(jm, (j + 1)m) by
Xj . This event is defined to be {maxjm<t2≤(j+1)m Y (t2) ≥ logA} for the Cusum procedure and for
the Shiryaev-Roberts procedure it is {maxjm<t2≤(j+1)mR(t2) ≥ A}. Notice that the stopping time is
not activated in the interval [0, xf(A)] if, and only if, all the relevant indicators equal zero. Hence,

{∑bxf(A)/mc
j=0 Xj = 0

} ⊂ {
NA > bxf(A)c} ⊂ {∑dxf(A)/me

j=0 Xj = 0
}
. (3)

The assessment of the survival function of the rescaled stopping time is obtained by showing that both
the sum on the right-hand side event and the sum on the left-hand side converge to the same Poisson
distribution with rate given by λx.

Using a somewhat loose notation let us consider the random variable W =
∑xA

j=1Xj , to which we
apply the Poisson approximation of Arratia et al. (1989), with the “neighborhood of dependence” J(j)
composed of {j − 1, j, j + 1}, with trivial modifications for the first and last j. The conclusion of their
Theorem 1 becomes:

Theorem 1. Consider the window-restricted Cusum or Shiryaev-Roberts stopping rule and define indi-
cators Xj with m = m(A) as above, logA¿ m¿ f(A). Let W be the sum of indicators then:

lim
A→∞

∣∣P (
NA/f(A) > x

)− e−E(W )
∣∣ = 0 . (4)

Proof. For any i 6∈ J(j), Xj and Xi are computed on the basis of disjoint of observations and are
therefore independent. Thus, the term b3 that measures dependence between remote elements vanishes.

Let J = {j}. The term that measures the neighborhood size becomes:

b1 =
∑

j∈J

∑

i∈J(j)\{j}
P(Xj = 1)P(Xi = 1) ≤ 2|J |{P(X1 = 1)

}2 + P(X1 = 1) ,

and the term that measures the expected number of neighbors is:

b2 =
∑

j∈J

∑

i∈J(j)\{j}
P(Xj = 1, Xi = 1) ≤ 2|J |P(X1 = 1, X2 = 1) + P(X1 = 1) .

However, {X1 = 1, X2 = 1} ⊂ B(2m− w, 2m+ w) ∪ {B(m, 2m− w) ∩B(2m+ w, 3m)}. Thus,

P(X2 = 1, X3 = 1) ≤ P(B(2m− w, 2m+ w)) + {B(m, 2m− w)}2,

The term |J |, the total number of indicators, is at most dxf(A)/me and the probabilities of the
events B are proportional to the length of the interval over which they are defined, divided by f(A).
Therefore,

b1 + b2 ≤ dxf(A)/me
{c2(m+ w)2 + c2m2

[f(A)]2
+

3cw
f(A)

}
+

2cm+ cw

f(A)
,

for some constant c and the proof of the theorem follows. ¤

Remark 1. By the analysis given in the previous section it can be shown that {f(A)/m}P(X2 = 1)
converges to λ. As a result E[W ] → λx that establishes λ as the rate of the limit exponential distribution.

Next let us deal with the issue of uniform integrability of the sequence {NA/A}:
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Theorem 2. The collection {NA/f(A)} of re-scaled window-restricted stopping rules index by A. is
uniformly integrable.

Proof. Consider again the auxiliary sequence of indicators {Xj} and define the random τ that identifies
the index of the first even element in the sequence that obtains the value one:

τ = inf{k : X2k = 1} .

Note that τ has a geometric distribution since the even elements are independent of each other. Moreover,
since NA ≤ 2mτ we get that

P(NA/f(A) > x) ≤ P (
τ > xf(A)/(2m)

)
=

{
1− P(X2 = 1)

}bxf(A)/(2m)c

and the proof follows once more from the convergence of {f(A)/m}P(X2 = 1). ¤

Remark 2. The scanning statistic declares at least one detection within the interval [1, x] if and only if
the Cusum stopping time is activated by time x. Therefore

P
(
max
t
Yt ≥ logA

) ≈ 1− exp
{− λCS · x/f(A)

}
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