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Abstract. We have employed sequential techniques to develop a procedure for constructing a fixed-width confidence interval
for the predicted value of an unknown regression model at a specific point of the independent variable. The fixed-width
confidence interval is developed using asymptotic properties of both Nadaraya-Watson and local linear kernel estimators of
nonparametric kernel regression with data-driven bandwidths and studied for the fixed random design case. The sample sizes
for a preset confidence coefficient are optimized using the modified two-stage procedure. The proposed methodology is tested
by employing a large-scale simulation study. The performance of each kernel estimation method is assessed by comparing
their coverage accuracy with corresponding preset confidence coefficients, proximity of computed sample sizes match up to
optimal sample sizes and contrasting the estimated values obtained from the two nonparametric methods with actual value or
values of at a given design point or at given series of design points of interest etc. The objective of this paper is to achieve the
minimum final sample size to construct fixed-width confidence intervals by using the modified two-stage sequential procedure.
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1 Introduction
We consider fitting a kernel regression model to the responses Y1, . . . , Yn at design points x1 < . . . <
xn. That is,

Yi = m(xi) + εi, i = 1, . . . , n (1)

where m(·) is an unknown continuous function and εi’s are independent identically distributed random
errors with 0 mean and Var(εi) = σ2, is an unknown constant. The Nadaraya-Watson (NW) estimator
of m(x) at a given point x = x0, is given by

m̂n,NW (x0) =
∑n

i=1 YiKhn(x0 − xi)∑n
j=1 Khn(x0 − xj)

(2)

where hn is the band-width, Khn(x) = K(x/hn) and K(·) is a kernel function. This estimator was
given by Nadaraya (1964) and Watson (1964) in their ground-breaking papers. Wand and Jones (1995)
gave more general form of an estimator for m(·), called the local polynomial kernel estimator of order p
for p = 0, 1, . . . When p = 0, it reduces to the NW estimator. Further, when p = 1, it gives an interesting
estimator referred to as the local linear kernel (LL) estimator (see Wand and Jones, p.119, 1995). The
LL estimator of m(x) at a given point x = x0, can be written as

m̂n,LL(x0) =
∑n

i=1 wiYi∑n
i=1 wi

(3)

where wi = Khn (x0 − xi)
[
sn,2− (x0−xi)sn,1

]
and sn,l =

∑n
i=1 Khn (x0 − xi) (x0−xi)l, l = 1, 2.

The following assumptions are used in this study. For more details we refer to Wand and Jones
(p.120, 1995):

(i) m
′′
(x) is continuous for all x ∈ [0, 1];

(ii) K(x) is symmetric about x = 0 and supported on [−1, 1];
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(iii) hn → 0 and nhn →∞ as n →∞;
(iv) The given point x = x0 must satisfy hn < x0 < 1−hn for all n > n0 where n0 is a fixed number.

Further, we consider univariate fixed design case such that xi+1 − xi is constant for all i. Thus, for a set
of n data points

xi =
i

n
, i = 1, 2, . . . , n. (4)

2 Asymptotic Properties

Using the assumptions listed in the above section, one can prove the following results for both NW and
LL estimators. Let us generically write m̂n,l(x0) where l = NW for NW estimator and l = LL for LL
estimator. Then

E [m̂n,l(x0)] = m(x0) + Biasl (5)

and
Var [m̂n,l(x0)] = (nhn)−1Bσ2 + o

{
(nhn)−1

}
(6)

where Biasl =

{
1
2h2

n [m′′(x0) + m′(x0)]µ2 + o
(
h2

n

)
+ O

(
n−1

)
if l = NW,

1
2h2

nm′′(x0)µ2 + o
(
h2

n

)
+ O

(
n−1

)
if l = LL,

µ2 =
∫∞
−∞ u2K(u)du and B =

∫
K2(u)du.

Theorem 1. Let us choose kernel K(·) such that
∫
|K(u)|du ≤ ∞, lim|u|→∞ uK(u) = 0 and∫

|K(u)|2+ηdu < ∞, for some η > 0 and the bandwidth hn satisfies lim nh5
n < ∞. Suppose m(x) is

twice continuously differentiable at x = x0 and E
[
|Y |2+η|x = x0

]
exists, then√

nhn

(
m̂n,l(x0)−m(x0)− Bias

)
→ N(0, Bσ2). (7)

In general the bias of the LL estimator is smaller than NW estimator. However one can choose hn

such that the Bias → 0 as n →∞ for both these estimators and hence,√
nhn

(
m̂n,l(x0)−m(x0)

)
→ N(0, Bσ2). (8)

3 Fixed-Width Confidence Interval

The goal is to construct a fixed-width confidence interval In for m(x) at a given point x = x0 with the
preassigned coverage probability 1 − α, that is, to have P {m(x0) ∈ In} ≥ 1 − α for 0 < α < 1. As
in de Silva and Mukhopadhyay (2004), take the bandwidth hn = n−r, 0.2 < r < 1. Now using the
property hn < x0 < 1− hn one can prove that

r = max

{
0.21,

− log
(
min[x0, 1− x0]

)
log(n)

}
and n ≥ 4. (9)

Consider the confidence interval In = [m̂n,l(x0)− d, m̂n,l(x0) + d] for fixed d(> 0). Now for large
n, one can prove that

P
(
m̂n,l(x0)− d < m(x0) < m̂n,l(x0) + d

)
≈ 1− α (10)

if n ≥ n∗ where

n∗ =
{

z2
α/2Bσ2d−2

} 1
1−r (11)

and zα/2 is the upper 50α% of the standard normal distribution.



Sequential Kernel Regression 3

3.1 Modified Two-Stage Procedure
A brief description of the modified two-stage sequential procedure considered in this together with its
stopping rule is given below. Comprehensive details of this procedure are given in Ghosh et al. (1997)
and Mukhopadhyay and Solanky (1994). Also, an application of a two-stage procedure for kernel density
estimation is given in de Silva and Mukhopadhyay (2004).

From Mukhopadhyay and Solanky (1994) and (11), the initial sample size, n0 for the modified two-
stage procedure is given by

n0 = max
{

4,

〈{
z2
α/2Bd−2

} 1
(1−r0)(1+γ)

〉
+ 1

}
(12)

where γ is a positive number and r0 is a number in (0.2, 1). Let
{
(x1, Y1), . . ., (xn0 , Yn0)

}
be the initial

sample where Yi is the observed value of m(xi) at xi = i/n0 for i = 1, . . . , n0. Now, from the optimal
sample size, n∗ given in (11), the stopping rule is

N = max
{

n0,

〈{
t2α/2,νBσ̂2

n0
d−2

} 1
1−r1

〉
+ 1

}
(13)

where tα/2,ν is the upper 50α% of the t-distribution with ν degrees of freedom, ν is a computable
number dependent on n0 and from (4), r1 = max

{
0.21,− log

(
min[x0, 1− x0]

)
/ log(n0)

}
. Here we

use the estimate of σ2 proposed by Gasser et al. (1986), that is,

σ̂2
n0

=
1

6(n0 − 2)

n0−1∑
i=2

(
Yi−1 + Yi+1 − 2Yi

)2
. (14)

In order to comply with the data design in (4) and to continually use the observed data in the initial
sample, take the final sample size, N = n0T where T is a positive integer given by

T =
N

n0
= max

{
1,

〈
1
n0

{
t2α/2,νBσ̂2

n0
d−2

} 1
1−r1

〉
+ 1

}
. (15)

Clearly if T = 1, no additional observations are required in the second stage and N = n0. However,
if T > 1 we need further n0(T − 1) observations in the second stage with

xi =
i

n0T
for i = 1, . . . , n0T and i 6= T, 2T, . . . , n0T. (16)

Note that the initial sample data corresponds to (xi, Yi) for i = T, 2T, . . . , n0T . Now, use the combined
sample

{
(x1, Y1), . . ., (xN , YN )

}
with xi = i/N to compute the NW and LL estimates for m(x0).

4 Simulation Study

A simulation study was conducted to compare the 95% fixed-width confidence intervals constructed for
NW and LL estimators. Simulations were performed using the

• linear function, m(x) = 4x + 3 with σ2 = 0.25 and
• nonlinear function, m(x) = 2 exp

{
−x2/0.18

}
+ 3 exp

{
−(x− 1)2/0.98

}
with σ2 = 0.25.

In both cases, 15000 simulation replications were carried out to obtain the final sample sizes required
to estimate m(x) at x = 0.308 given fixed-width, 2d. The following tables give the summary results
obtained from the simulation study. Here p is the coverage probability, n is the average final sample size
and (.) gives the standard error of the estimated value.
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Table 1. Simulation results for the linear model

d n0 n∗ n m̂NW (x0) pNW m̂LL(x0) pLL σ̂2
n

0.10 70 97 133.91 4.5516 0.0001 4.2322 0.9288 0.2381
(0.3139) (0.0004) (0.0001) (0.0005) (0.0021) (0.0004)

0.08 104 152 207.63 4.5472 0.0000 4.2320 0.9337 0.2444
(0.3678) (0.0003) (0.0000) (0.0004) (0.0020) (0.0003)

0.06 175 270 359.15 4.5150 0.0000 4.2322 0.9329 0.2483
(0.4231) (0.0003) (0.0000) (0.0003) (0.0020) (0.0002)

0.04 363 663 807.53 4.4255 0.0000 4.2319 0.9297 0.2496
(1.2369) (0.0002) (0.0000) (0.0002) (0.0021) (0.0001)

0.03 611 1373 1751.21 4.3517 0.0000 4.2319 0.9497 0.2500
(1.7181) (0.0002) (0.0000) (0.0001) (0.0018) (0.0001)

Table 2. Simulation results for the nonlinear model

d n0 n∗ n m̂NW (x0) pNW m̂LL(x0) pLL σ̂2
n

0.10 70 97 133.91 2.9923 0.9176 3.0303 0.9255 0.2381
(0.3139) (0.0004) (0.0022) (0.0005) (0.0021) (0.0004)

0.08 104 152 207.38 2.9926 0.8997 3.0302 0.9258 0.2442
(0.3658) (0.0003) (0.0025) (0.0004) (0.0021) (0.0003)

0.06 175 270 359.44 2.9942 0.8645 3.0296 0.9287 0.2483
(0.4311) (0.0002) (0.0028) (0.0003) (0.0021) (0.0002)

0.04 363 663 810.72 2.9986 0.7972 3.0268 0.9188 0.2496
(1.2542) (0.0002) (0.0033) (0.0002) (0.0022) (0.0001)

0.03 611 1373 1754.27 3.0040 0.8077 3.0244 0.9456 0.2500
(1.7009) (0.0001) (0.0032) (0.0001) (0.0019) (0.0001)

The above tables clearly show that NW estimator is bias and fail to achieve the required coverage
probability. However, LL estimator performed well in both linear and nonlinear cases.
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