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1 Introduction

The ingredients of the changepoint detection problem are a sequence of observations {Xi} whose base-
line distribution has a density f0 that may change to a density f1. The changepoint ν (the serial number
of the first post-change observation) is unknown, and can take place at any 1 ≤ ν <∞. (ν =∞ denotes
the case where a change never takes place.) A detection scheme is characterized by a stopping time N ,
at which an alarm is raised (a change is declared to have taken place).

The motivation of attempts to deal with this problem can be classified as either classical or Bayesian.
Classical approaches define operating characteristics for false alarm rates and for speed of detection.
Bayesian approaches assume a prior distribution on the changepoint, and attempt to minimize the ex-
pected value of a loss function. As is often the case in statistics in general, the twain do meet.

2 Some history

The first attempt to deal with the changepoint problem formally is due to Shewhart (1931), who was
primarily interested in detecting a shift in the mean of a normal distribution. His frame of reference is
a series of independent variables with known baseline distribution. He proposed (ad hoc; it seems to
have been satisfactory for the industrial applications of his time) raising an alarm the first time that an
observation exceeds the (known) baseline mean by more than three standard deviations. His perspective
is classical; ARL’s (average run lengths, until a false alarm, and from change to its detection) are the
operating characteristics of the method. The method is known to be very good in detecting a large change
quickly.

During the next decade, the fact that the Shewhart procedure does not enable information to accumu-
late brought about ad hoc attempts to correct for this (such as ”warning lines” and ”action lines”, where
too many proximate observations in exceedence of a warning line would also be cause for alarm). The
perspective of these methods, too, is classical.

The first Bayesian consideration of the problem is due to Girschick and Rubin (1952). They assumed
the observations to be independent and f0 and f1 to be known. They posited a geometric prior on the
changepoint and a gain (or loss) function for each observation. Their objective was to maximize expected
gain per observation. Their solution calls for raising an alarm whenever the posterior probability of
a change having taken place is large enough. This procedure is a precursor of the Shiryaev-Roberts
procedure. With the same probabilistic structure, Shiryaev (1963, 1978) considered minimizing E(N −
ν|N ≥ ν) when each post-change observation costs c > 0 units and the penalty for a false alarm is 1
unit. His solution is the same.

The next development was classical: Page (1954) proposed the Cusum scheme, which in essence
is a repeated sequence of SPRT’s defined by f0 and f1 that calls for an alarm the first time that a
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SPRT exits on the side of f1. The ARL to false alarm and the average delay to detection are the rele-
vant operating characteristics. The observations are assumed to be independent, f0 is assumed known,
and although the post-change distribution need not be known to implement the procedure, it is nec-
essary to represent it by a (fixed) density f1 in order to spell out the SPRT. The definition was ad
hoc. Lorden (1971) proved that the minimum over all stopping times N with ARL to false alarm
≥ B of sup1≤k<∞ ess sup Eν=k(N − k|X1, X2, . . . , Xk−1) is (1 + (o(1)) × (logB)/I , where I
is the Kullback-Leibler information number (of the post-change density vs. the pre-change density) and
o(1) → 0 as B → ∞, and showed that the Cusum scheme achieves this asymptotic lower limit. Mous-
takides (1986) went the last leg and proved that (when f1 is the true post-change density) the appropriate
Cusum scheme is strictly optimal in minimizing sup1≤k<∞ ess sup Eν=k(N−k|X1, X2, . . . , Xk−1)
over all stopping times N with ARL to false alarm ≥ B. In this context, Ritov (1990) proved the opti-
mality of the Cusum in a game-theoretic setup, with Nature and the statistician being opposing players.
Beibel (1996) proved the same in a Brownian motion context.

Roberts (1959) proposed the exponentially weighted moving average (EWMA) method. His ap-
proach is classical (motivated by time series). Srivastava and Wu (1993) found this method to be inferior
to others.

In a Brownian motion context of detecting a shift in mean, Shiryaev (1961, 1963) considered the
problem of detecting an object with the aim of minimizing expected delay (from change to detection),
asymptotically after a long run of false alarms raised by successive application of a stopping time N ,
under the constraint that the ARL to false alarm (in a single application of N ) be ≥ B. He found
that the optimal procedure is analogous to that of Girschick and Rubin’s when the parameter of the
geometric prior tends to zero. (A discrete time analog of Shiryaev’s result was derived by Pollak and
Tartakovsky, 2009.) Independently, Roberts (1966) was the first to consider this limit in the context of
reducing expected delay to detection (of a single application of the stopping time) subject to a lower
bound on the ARL to false alarm. Roberts studied the procedure by simulation, comparing it to other
procedures (Cusum, EWMA and others), and found it to be good. The procedure is now known as the
Shiryaev-Roberts procedure.

Pollak (1985) also considered the changepoint problem in a classical framework. The conditions
considered are that the observations are independent, with known f0 and f1, and the goal is to minimize
sup1≤k<∞Eν=k(N − k|N ≥ k) subject to ARL to false alarm ≥ B. He found that that a method based
on starting the Shiryaev-Roberts procedure at a random value is optimal to within an additive o(1) term,
with o(1) → 0 as B → ∞. The method of proof is Bayesian; he took Shiryaev’s (1978) solution of the
Bayesian problem a step further, showing that the aforementioned procedure is a limit of Bayes rules.
The question of whether this procedure is strictly optimal was open until very recently; Polunchenko
and Tartakovsky (2009) produced a counterexample.

3 Generalization

The basic Shiryaev-Roberts statistic and stopping time are respectively

Rn =
n∑
k=1

n∏
i=k

f1(Xi)
f0(Xi)

and NA = min{n|Rn ≥ A}

where A is a threshold value tuned to satisfy ARL to false alarm ≥ B (actually, = B), where B is a
lower bound on the acceptable rate of false alarms. A generalization of this procedure is to define

Rn =
n∑
k=1

fν=k(X1, X2, . . . , Xn)
fν=∞(X1, X2, . . . , Xn)

and NA = min{n|Rn ≥ A}

where fν=∞ is the joint density of the observations when no change ever takes place and fν=k is a joint
density of the observations when ν = k and the first k− 1 observations are distributed as they would be
under the regime dictated by f∞. The observations need not be independent.
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As mentioned above, optimality properties of the basic Shiryaev-Roberts procedure (as well as that
of Cusum) hinge on the true post-change density being f1. Since f1 is usually a representative of possible
post-change densities while in practice the true post-change density is unknown (generally different
from f1), the regret for ignorance of the true post-change density is of order of magnitude logB - a
rather heavy price to pay. To boot, there are many situations where f0 is unknown, and even a small
misspecification of f0 can result in the true ARL to false alarm being very different from the nominal
one (van Dobben de Bruyn, 1968). This can be rectified sometimes by the generalized Shiryaev-Roberts
statistic. For example, consider a case where observations are independent, with pre-change known
density f0 and post-change density fθ, where the family {fθ} is known but the actual value of θ is not.
Positing (arbitrarily) a prior G on θ results in

fν=k(X1, X2, . . . , Xn) = f0(X1)f0(X2) · · · f0(Xk−1)
∫
fθ(Xk)fθ(Xk+1) · · · fθ(Xn)dG(θ) .

To fix ideas, suppose one knows that the baseline distribution is standard normal and one monitors for a
change of mean, assuming the standard deviation remains the same, and one chooses a standard normal
prior on θ. Assuming ν = k, when calculating the likelihood ratio of the observations up to time n the
part f0(X1)f0(X2) · · · f0(Xk−1) in the numerator cancels out with the same in the denominator, so

Rn =
n∑
k=1

∫
e−

1
2

∑n
i=k(Xi−θ)2 1√

2π
e−

1
2
θ2dθ

e−
1
2

∑n
i=k X

2
i

=
n∑
k=1

∫
e
∑n

i=k θXi− 1
2
(n−k+1)θ2 1√

2π
e−

1
2
θ2dθ =

n∑
k=1

e
1
2

∑n
i=k X2

i
n−k+2

√
n− k + 2

.

An alternative to utilizing a prior is to use an estimate of the post-change parameter for obtaining
a likelihood ratio for the next observation. For instance, in the previous example, the likelihood ratio
of observation Xn+1 is eθXn+1− 1

2
θ2 . When putatively ν = k, an estimate of θ based on the first n

observations is θ̂nk = 1
n−k+1

∑n
i=kXi, so a Shiryaev-Roberts-type statistic could be defined as

Rn =
n∑
k=1

e
∑n

i=k θ̂
i−1
k Xi− 1

2
(n−k+1)(θ̂i−1

k )2

(Lorden and Pollak, 2005. See also Siegmund and Venkatraman, 1995). This method is slightly less
efficient than the former, but its implementation is usually much faster when utilizing a prior entails
numerical integration.

The generalized Shiryaev-Roberts statistic can be applied sometimes even when f0 is unknown
(cf. Pollak and Siegmund, 1991). For example, suppose observations are independent, N(µ, σ2) before
change, N(µ + δσ, η2σ2) post-change, with µ, δ, η, σ unknown. (This is a description of monitoring a
process observed for the first time for a change in mean and/or variance, when normality and indepen-
dence of the observations is deemed appropriate but nothing is known about any of the parameters.) The
invariance structure can be exploited in the following way: for starters, choose arbitrary δ and η. Define
Zi = Xi−X1

|X2−X1| . Obviously, the distribution of Z1, Z2, . . . , Zn does not depend on µ and σ. Although the
Zi’s are dependent, their joint density is amenable to calculation. If there is no change, the distribution
of Z1, Z2, . . . , Zn is completely specified, and when ν = k it depends on δ and η only. Therefore, if one
regards δ, η as representatives of the post-change parameters, one can calculate the likelihood ratios that
make up Rn if one bases surveillance on the sequence of Z’s instead of the original X’s. Furthermore,
if taking a single representative pair is not palatable, then a prior G on δ, η can be chosen as above. The
resulting formulae are complicated and integration with respect to G may have to be numerical, but with
today’s computing facilities all of this is feasible.

Whenever an invariance structure exists, surveillance based on a sequence of (maximal) invariants
can be handled in a similar fashion. Detecting a change in the slope of a regression can be handled this
way - all possible combinations of mean, standard deviation, slope - known baseline, partially known
baseline, no parameters known - is amenable to this method (cf. Krieger et al., 2003, and references
therein).



4 Pollak

The generalization of the basic Shiryaev-Roberts procedure can even be applied to a nonparametric
setup - observations are independent, with densities f0 pre-change, f1 post-change, both unknown (a
situation similar to the previous one, without assumption of normality). A reasonable approach would
be to base surveillance on the series of sequential ranks {Zn} (i.e., Zn =

∑n
i=1 1(Xi ≤ Xn), where

1(·) is the indicator function). To construct a generalized Shiryaev-Roberts statistic, all that is needed
are likelihood ratios for Z1, Z2, . . . , Zn. The denominator will always be 1/n!. Although more problem-
atic, the numerator can also be dealt with under certain assumptions (cf. Gordon and Pollak, 1995, and
references therein).

When an invariance structure does not exist, the going can get to be quite complicated. See Siegmund
and Venkatraman (1995) and references therein.

4 ARL to false alarm

Obviously, to implement a Shiryaev-Roberts procedure (basic or generalized), one has to connect be-
tween the desired ARL to false alarm B and the stopping threshold A. Exact expressions are hard to
come by, but an asymptotic (B →∞) approximation of the form A = B/const (as well as the value of
const) is usually obtainable by renewal-theoretic considerations (Pollak, 1987, Yakir, 1995, 1998 and
references therein). The most fruitful approach for proofs employs a change-of measure ploy due to
Yakir (1995).

In addition, by the optional sampling theorem, the (simple to show) fact that when a change is not
in effect {Rn − n} is a martingale with zero expectation translates into E∞(RNA

−NA) = 0; since by
definition RNA

≥ A, this obtains the inequality E∞NA = E∞RNA
≥ A, meaning that simply setting

A = B satisfies (conservatively) ARL to false alarm ≥ B.

5 Average delay to detection

When the baseline distribution of the X’s is known, taking a continuous prior G on post-change pa-

rameter values obtains a procedure whose maximal average delay to detection is logB+ 1
2
loglogB

I +O(1)
(Pollak, 1987), and up to an additive O(1) term one cannot do better uniformly. Only the O(1) term
depends on G, meaning that asymptotically the prior almost ”washes out”, so that choosing a ”com-
fortable” (appropriate) G is reasonable. There are more accurate asymptotic expressions for the average
delay to detection, but they often contain constants that are obtainable only via simulation, and since by
design the average delay to detection is hopefully small, asymptotics don’t kick in quickly.

Note than in case the distribution of pre-change observations Xi’s is unknown and invariance is
invoked, the distribution of the (maximal) invariant when there is no change is the same as when the
change is in effect from the very beginning. Hence, the maximal average delay to detection will be B.
However, it can usually be shown for some constants η1 > 1, η2 > 1 that if O((logB)η1) ≤ ν ≤ Bη2

then the regret due to ignorance of the baseline distribution is minor.

6 Techniques of proofs

Most claims of optimality and asymptotic optimality are proved either by finding a lower bound for aver-
age delay to detection and showing that a method attains the bound or by Bayesian methods. Asymptotic
formulae for ARL to false alarm and for average delay to detection are generally obtained by (nonlin-
ear) renewal theory. Average delay to detection is directly amenable to renewal-theoretic methods, as
the post-change distribution of the surveillance statistic has a positive drift. ARL to false alarm is more
difficult, as generally the surveillance statistic does not have positive drift. The way around this is by a
change-of-variable technique (Yakir, 1995); dP∞ =

∑j
k=1

dPk
Rj

, enabling calculations under the regime
dPk, where the drift is positive.
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7 Practical considerations
The basic Shiryaev-Roberts statistic admits the recursion Rn+1 = (Rn + 1)f1(Xn+1)

f0(Xn+1) with R0 = 0, and
is therefore easy to implement. If one is worried that a change may have a good chance to be in effect
from the very beginning, starting things off at some R0 > 0 enables a fast initial response (Moustakides
et al., 2009. See also Lucas and Crosier, 1982).

The generalized Shiryaev-Roberts statistic generally does not admit a recursion, meaning that all past
observations must be retained, and the longer the list the lengthier the computation time (the algorithm
is of order n2 at least, and if numerical integration is involved this may become a serious problem). An
obvious fix is a form of truncation: usually, calculating the first 100-200 and the last 200-300 likelihood
ratios and summing them is hardly different from summing them all.

Generally, the asymptotic constant c = limA→∞
E∞NA
A is good enough for setting a threshold A =

B/c when B is the required lower bound on the rate of false alarms, even when B is relatively small
(B > 100). Calculation of c is often possible by renewal theory. In any case, simulation invariably
obtains a good approximation. If this is too tedious, due to the martingale structure of the generalized
Shiryaev-Roberts statistic one can always set conservatively A = B.

Asymptotics aside, when B is of order magnitude 100 − 1000, differences between schemes that
apply representative values for post-change parameters often are not markedly different from the more
complicated procedures. Also, differences between Shiryaev-Roberts and Cusum are not marked when
B is large (after all, both have optimality properties in their own way).

While the basic Cusum procedure appears in many popular statistical computer packages (Shiryaev-
Roberts doesn’t (yet)), a Cusum analog of the generalized Shiryaev-Roberts procedure does not.

A data-analytic advantage of the Shiryaev-Roberts control chart over the standard Cusum chart is the
linear connection between the ARL to false alarm B and the stopping threshold A, that (when plotting
Rn by n) lends Rn the flavor of a p-value (Kenett and Pollak, 1996).

Although obviously important, the problem of estimation after detection has not received extensive
attention so far (but see Wu, 2005, and Foster and George, 1993). The difficulty with estimation of post-
change parameter values stems from the attempt to minimize the number of post-change observations,
which obviously is detrimental for estimation purposes.

8 Concluding remarks
The Shiryaev-Roberts approach provides an extensive arsenal of tools for changepoint detection.
Nonetheless, the most popular control chart is still Shewhart. In spite of its lesser efficiency, its simplic-
ity makes it easy to explain to the uninitiated, and it does not require sophisticated computer programs.
Next in line of popularity are the EWMA and Cusum basic procedures, which have the fore in terms
of their early and wide publication, especially in applied journals. In this respect, Shiryaev-Roberts is a
latecomer. Hopefully it will take its rightful place as a leading tool for changepoint detection.
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