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EFFICIENCY OF SEQUENTIAL HYPOTHESES TESTING
ANDREI NOVIKOV

ABSTRACT. The classic work of Aivazjan (1959) gives an asymptotic comparison
of the optimal properties of fixed-size and sequential tests for regular statistical
experiments based on independent identically distributed observations. The aim
of the present paper is to extend the results of Aivazjan to a much broader class
of statistical experiments with local asymptotically normal (LAN) behaviour. In
particular, they apply to the case of non-regular “almost smooth” families as well
as to Markov dependent observations.

The classic work of Aivazjan [1] deals with an asymptotic comparison of the optimal
fixed-size and sequential tests for regular statistical experiments based on indepen-
dent identically distributed observations. The aim of the present paper is to extend
the results of Aivazjan to a much broader class of statistical experiments with local
asymptotically normal (LAN) behaviour. In particular, they apply to the case of
non-regular LAN experiments (see [4], Ch. 2) and Markov dependent observations
(8], [7]-

Let X;,X5,X3,... be a discrete-time stochastic process whose distribution is
known up to a real-valued parameter 6. Let Hy : § = 6y and H; : 6 = 6; be
two simple hypotheses about the parameter to be tested on the base of the observa-
tions X1, Xo, X3, ...,,X,, where v is a stopping time. Let ¢ = (X1, X5,...,X,) be
a test of Hy against Hj, i.e. a measurable function taking values in [0,1] (with the
usual interpretation as the conditional probability, given observations X, Xo,..., X,
to reject Hp). The quantities a(p) = Eg,¢(X1, Xs,...,X,) and B(p) = Eg, (1 —
o(X1,Xs,...,X,)) are known as probabilities of the first and second kind, respec-
tively.

One of the classic problems is to find an (optimal) test ¢ which would satisfy
a(p) < a and B(p) < B for any given « and .
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In the class of the fixed-size tests (¥ = n = const), the solution is given by the
well-known Neyman-Pearson test:

1, if Z, >c¢,
(1) (10* =37 if Zn =,
0 otherwise,

where
fn(X1>X27 e >Xn;01)

fn(XlaXQa S ;Xn;eo)

is the likelihood ratio statistics, f"(X1, Xs,. .., X,;68) being probability density func-
tion of (X1, Xa,...,X},) when 6 is the true value of the parameter. Let n* = n*(a, )
be a minimal sample size n for which there exists a test ¢ such that a(p) < « and
B(p) < B. From the optimal property (see, for example, [3]) of the Neyman-Pearson
test it follows that n* can be determined as the minimal sample size n for which test
(1) satisfies a(¢*) < « and B(p*) < 3.

As well, when the observations X, Xs,... are independent and identically dis-
tributed the following is the classical result of Wald (see, for example, [3]). Let
stopping time v be defined as

(2) v =min{n: Z, ¢ (a,b)}

Zn = Zn(X1,Xs,...,X,) =

with some constants a, b, and let

1, if Z, >b,

3 = o(X1, Xa,... . X)) =
®) =l Xo ) {0, it Z, < a.

If the constants a and b are chosen in such a way that a(p) = a and B(p) = § for
test (3) then among all the tests whose error probabilities of the first and the second
kind do not exceed o and f, respectively, test (3) has the minimal average sample
number (ASN), both under hypothesis Hy and under Hj.

In paper [1], the asymptotic behaviour of the two competitive test was investigated
in the case of close hypotheses (1 — 6), under quite restrictive conditions of regu-
larity and when the observations are independent and identically distributed. It was
proved that if #; =6y + ¢, € — 0, then

. (@1l -a)+2'(1-p)°
) " =21(0)

where ® ! is the inverse of the standard normal distribution function ®, and I(9) is
the Fisher information.

As to the behaviour of the Wald test, in paper [1], it was shown that

w(a, B) w(B, a)
e21(6y) e21(o)’

(5) EQOV ~ 2 and E911/ ~ 2 e—=0,
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w(z,y) being the Wald function

©)  wley)=rln

]__
+(1-2)ln y”:, O<z<l, 0<y<l.

We extend these results to a broad class of locally asymptotically normal (LAN)
statistical experiments assuming neither regularity of the experiment nor indepen-
dence of the observations.

Let us assume that we are able to observe a discrete-time stochastic process
X1, Xo,..., X,,... with a distribution Py known up to a real-valued parameter 6,
0 € ©,0 C R Let PJ be the distribution of the first n observation (X1, X»,..., X,),
and let 8y be an interior point of ©.

The LAN condition (cf.[5], [6], [4], [8]). Let us say that the family {Py} is locally
asymptotically normal (LAN) at the point 0y if there exists n(e) such that for any
t- > t, e >0,

dPy
(7) 7y, = — 55 = exp{Vi — t/2+ b},

dPy

with n = [ten(e)], where &, tends in distribution to a standard normal random variable
& (& = €~ N(0,1)), and ¢, — 0 in probability Pp,, when X1, Xs,... follow Py,.

Common examples of LAN families are: regular statistical experiments with in-
dependent observations (see [5], [6]), “almost smooth” statistical experiments ([4],
Chapter 2), regular Markov dependent observations (see, for example, [8]), etc.

Properly saying, usually the LAN condition is formulated with t. = 1 in (7) (see,
for example, [4]). We will need this slightly modified variant, which normally holds
under the usual LAN (as considered in [4]) because of independence of observations.
In what follows we shall see, that the behaviour as in (7) is quite typical for a LAN
experiment even without the independence condition.

In the case when Py, and P are not absolutely continuous with respect to
each other, we shall suppose that there is on the left-hand side of (7) the Radon-
Nikodym derivative of the absolutely continuous part of P! , . with respect to P! . For
simplicity, throughout the paper we shall suppose the absolute continuity, although
all results will be valid without this condition.

Throughout the paper we will focus on the problem of testing the hypothesis Hy :
0 = 6y against Hy : 0 = 0. where . =60y + ¢, and ¢ — 0.

Let n* = n*(¢) = n*(¢; @, 8) be a minimal integer n for which there exists a fixed-
sample test of Hy vs. H; based on n observations whose error probabilities of the
first and the second kind do not exceed « and [, respectively. The following theorem
is a quite easy generalization of (4).



74 ANDREI NOVIKOV

Theorem 1. Under condition (7), for n* = n*(e) the following equivalence is valid:

(8) n*(e) ~n(e) (1 —a) + & (1 -B))°, e = 0.
Proof. First of all, we prove that

. n(e)
©) glg%) n(e) <

For that, is sufficient to find a test based on a number [kn(e)] of observations with error
probabilities less than « and 3, respectively. Let ¢y, be a test based on the n = [kn(e)]
observations rejecting Hy when Z; > 1. Let us evaluate its error probabilities and
their asymptotic behaviour. Because of (7) we have:

alpr) = Po, (25 > 1) = P(eV¥F2 5 1) = 1 - 3(VE/2),
and
Bler) = Po(Z5 <1) = By, Z3I17: 1y = BeV™ 20 e oy =1-8(VE/2).
So, choosing k in such a way that 1 — ®(v/k/2) < min{a, 3}, we have
lim a(pr) = lim f(pr) < min{a, 5},
and therefore n*(¢) < kn(e) for € small enough, which proves (9).

Suppose now that ¢; — 0 is any sequence such that n*(g;)/n(e;) — t, as i = oo,
for some t < 0co. Let us show that

(10) t=(@'(1-a)+2 ' (1-4))7,
which would prove the theorem.
Let the constant ¢ = ¢(g,n) be defined for each &, n from the equality
(11) Py (Z5 > c)+vPy,(Z, =¢) = a.
with some 0 < v < 1.

This definition is suggested by the form of the Neyman-Pearson test for Hy vs. Hy
of level a.

We note first that for any t. -t ase — 0
(g, [ten(e)]) — ¢,

where ¢ is defined by the equality

(12) P(eVEt? 5 0) =,
i.e.
(13) c=exp{—t/2+Vt® (1 - a)}.

This is quite obvious, because, as seen from (11), ¢ is essentially the upper a-point of
the distribution of the Z; statistics which converges weakly to that of the left-hand
side in (12).
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From the optimal property of the Neyman-Pearson test it follows that for n = n* =
n*(e) it holds

(14) Py (Z, <cle,n)) + (L =P (Z, =c(e,n)) < B,
(15) Py (Z;_y<cle,n—1)+ A —y)Py (Z;_y =cle,n—1)) > B.

Passing in (14) and (15) to the limit as € — 0, we get:

(16) lim Py (75, < cle,n)) = BV PL sic ooy = B,
so that
c—1/2
17 ®(In = g.
o (577) =
Combining (13) and (17) we get (10), which completes the proof. O

To treat the sequential case we need a condition of more complicated nature than
(7). The following condition can be called the functional LAN condition.

Let Z¢(t) be a random function on [0, 00) defined as

Let D[0,T] be the Skorokhod space of right-continuous functions with left limits
on [0,T] endowed with the Skorokhod metric p.

The functional LAN condition. For each T > 0 the distribution of the random
function Z=(t) in D[0,T] converges weakly, when X, Xo,... follow the distribution
Py, to that of the random function Zy(t) = exp{w(t) — t/2}, where w is a standard
Wiener process.

The functional LAN condition is related to the LAN condition in the same way as
the invariance principle of Donsker-Prokhorov (see, e.g., [2]) is related to the central
limit theorem. As easily seen, representation (7) gives the weak convergence of one-
dimensional distributions of Z¢ to those of Zj.

In fact, the functional LAN condition is a simple consequence of the LAN condi-
tion if the observations Xy, X, ..., are independent. This is due to [9], see Theorem
1 therein. In particular, it holds for “almost smooth” distributions families consid-
ered in [4], Chapter 2. Moreover, it holds for regular families generated by Markov
observations, considered, for example, in [8], due to a recent result by the author in
[7].

In what follows we will show that the functional LAN condition implies that under
the alternative hypothesis, i.e. when X, Xs,... follow Pp_, the limiting distribution
of Z¢ is that of Z;(t) = exp{w(t) + t/2}.
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With respect to Wald’s SPRT under the functional LAN condition let us define,
for any two constants (a,b), a < 1 < b, a stopping time

(19) v =min{n: Z; & (a,b)},
and let

1, if Z. > b
20 f = (X1, Xoy e, X2 ) =1 v
(20) o= ) {0, if 7. < a.

We will need also “limit” versions of the stopping time v in (19). Let
(21) vo = min{n : Zy(t) & (a,b)}, v = min{n : Z(t) ¢ (a,b)},

In order that the error probabilities of test (19)-(20) be no greater than a and £,
respectively, A.Wald proposed approximations
]_ —
(22) B B

= b=
R DN a ’

(see e.g. [3]).

We will show that if the constants are chosen in such a way, the error probabilities
of test (19)-(20) converge to a and 3, respectively. Because, in view of Theorem 1,
n* is the minimal fixed sample size which provide the same error probabilities, a and
B, respectively, it is of interest to investigate the asymptotic behaviour of the ASN of
the latter test and compare it with n*. The first is done in Theorem 2 below.

Let us denote £(Z|Py) the distribution of random element Z = Z(Xi, Xo,...)
when X, Xo,... follow the distribution Py, or simply £(Z) the distribution of Z
when there is no ambiguity about the distribution.

Theorem 2. Under the functional LAN condition, if the constants of test (19)-(20)
are defined as in (22), then

(23) a(e®) »a,  Bl¢) =B, as 0.
As to v we have the following weak convergence of distributions:
(24) L |Py,) = L(vo), L(V°|Fy.) = L£(v1), as e —0,

and when v° is uniformly integrable with respect to Py, (Py.) then

(25) Epov® ~n(e)Evy, (Eg.v° ~n(e)Evy,) as e —0,
where
(26) Evy =2w(a, ), Ev, =2w(f,a),

(see (6) for the definition of w(x,y)).
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Proof. First of all, let us note that under the functional LAN condition
(27) L(Z°|Pp.) = £(Z1) as e —0,

in D[0,T]. The convergence of the finite-dimentional distributions corresponding to
(27) is straightforward because of the functional LAN condition.

It remains to show the relative compactness of £(Z¢|Py_). This follows from relative
compactness of £(Z¢|Pp,) because of contiguity of P and Pl for n = [T'n(e)] (see
for the notion of contiguity e.g. [8]):

The contiguity is due to Proposition 3.1 of Chapter 1 in [8]. By virtue of the
functional LAN convergence, for each 6 > 0 there exists a compact subset K; such
that Py, (Z° & Ks) < d for all € (tightness). Let 6 be any positive number. Then for
any € and K

Py (Z° ¢ K) = FEypZyliz-¢ky}

By 2y zg > lyz=gxcy + Eoo Znliz: < lizg iy
EQOZTELI{XTEL>C} + C.F)@O{Z6 € K} .

IN

(28)

Because of the contiguity Z;, is uniformly integrable, so the first term on the right-
hand side of (28) can be done less than /2 by choosing ¢. Now, choosing a compact
K in such a way that Py, {Z° ¢ K} < §/(2c¢) for all € we will have that the right-hand
side of (28) is less than § for any . So, the tightness of the distribution of Z°¢ is
proved. Thus, by the theorem of Prokhorov ([2], Chapter 1, Theorem 6.1) £(Z¢|Fy,)
is relative compact, and hence converges weakly to £(Z;).

Let us prove now the first statement (23) of the Theorem. Let A C D[0,T] be the
subset of all functions z which “exit” the interval (a,b) through the upper bound. It
is obvious that the boundary, in D[0,T], of A is contained in

{z € D[0,T]: sup z(t) =b}
t€[0,T

which obviously has Pz, -measure 0 (as usual, Pz stands for the distribution of Z). So
from the theorem of Alexandroff [2] it follows that

(29) a(p®) = Py, (Z° € A) = P(Z € A).

Analogously, f(¢°) = P(Z% € B), where B is the subset of D[0,T] consisting of
functions which exit the interval (a,bd) through the lower bound, and its boundary
has Pz, -measure 0, so

(30) B(¢°) = Py.(Z° € B) = P(Z; € B).
As Zy(t) is a martingale with EZy(t) = 1, then EZy(vg) = 1. Therefore

(31) P(Zy€ A)b+ (1— P(Zy € A))a = 1.
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Analogously, Z; ! is a martingale, so
1
b
From (31) and (22) it follows immediately that P(Zy € A) = a, and analogously from
(32) and (22) we get P(Z; € B) = . Thus, combining this with (29) and (30) we
have

(32) P(Z € B)x 4+ (1-P(Z € B))é _1

M £ M £
lima(p’) »a,  ImpeT) =4, as =0,

which proves (23).

Relations (24) are immediate because the first exit time from the bound is an
almost sure continuous functional on D[0,T], and so (24) is a simple consequence of
Theorem 5.1, Chapter 1, [2].

Now, relations (25) follow from (24) and from Theorem 5.4, Chapter 1, [2].
To prove (26) let us start with the identity

(33) ElnZy(vp) = alnb+ (1 —a)lna.
On the other hand,
(34) Eln Zy(vy) = E(w(v) —/2) = —Ewy/2.

Combining (33) and (34) with (22) we get

EV0:2<a1n1f6+(1—a)1n1;a>

which proves the first of relations (26). The other is proved in a similar way. O

Comparing the asymptotics of the ASN of the two competitive tests in Theorem
1 and Theorem 2 we have the following asymptotic efficiency of the Wald test with
respect to the Neyman-Pearson test:

(35) lim 200" _ 2w(@, f)
S0 (E) T (@M1 a)+ 11— )
Eg.v° 2w(B, a)
50 nr(e) (@-1(1—a) +®-1(1-4))°
This is a portion of the sample number which would require the Wald’s SPRT, in

average, in comparison with the non-sequential Neyman-Pearson test. The numeric
evaluation of (35)-(36) can be found in [1].

and

(36)
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