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Preface

Prague Stochastics 2006, held in Prague from August 21 to 25, 2006, is an interna-
tional scientific meeting that continues the tradition of organising Prague confer-
ences on stochastics, established here five decades ago. The first Prague Conference
on Information Theory, Statistical Decision Functions and Random Process was ini-
tiated by Antońın Špaček in 1956. Prague Symposia on Asymptotic Statistics were
founded by Jaroslav Hájek in 1973. This year, we are commemorating the 80th
anniversary of the birth date of this untimely deceased outstanding scientist.
Traditionally, the scope of the proceedings, as well as the conference itself, is quite
extensive; the topics range from classical to very up-to date ones. It covers both
methodological and applied statistics, theoretical and applied probability and, of
course, topics from information theory. We hope that all readers will find valuable
contributions and a number of papers of their interest in this rich spectrum of
scientific ideas.
The printed part contains the plenary and invited papers, and the list of all contri-
butions published in the volume. The CD disc, attached as an official part of the
book with the same ISBN code, contains all accepted papers.
The editors would like to express their sincere thanks to the authors for their valu-
able contributions, to the reviewers for prompt and careful reading of the papers,
and to the organisers of the sections for the help with the entire reviewing process.
Our thanks also go to our colleagues, in particular to Pavel Boček and Tomáš
Hobza, for their technical editorial work. Without their devotion and diligence, the
proceedings would never be completed.
It is our pleasure to acknowledge that Prague Stochastics 2006 is held under the
auspices of the Mayor of the City of Prague, the Bernoulli Society for Mathematical
Statistics and Probability, and the Czech Statistical Society.

Prague, June 2006 Marie Hušková, Martin Janžura
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Level shifts and random walks 73

Drton Mathias:
Algebraic Techniques for Gaussian Models 81
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Presmoothed estimation with truncated and censored data 448

Kan Yuri:
Quantile Comparison 458

Klaassen Chris A.J. , Mokveld Philip J., van Es Bert:
Current duration versus length biased sampling 466
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Probability metrics and robustness:
Is the sample median more robust than the sample
mean?
Evgueni Gordienko, Andrey Novikov

Abstract: In this paper, we consider a modified concept of qualitative robustness
introduced by Hampel (see [5]). The modification takes into account the asymp-
totic normality of the estimators and allows to obtain quantitative estimates of
the robustness in terms of suitable probability metrics. To this end, we measure
deviations from the model distribution by metrics rather than by the level of ”con-
tamination” with a heavy-tail distribution.

We show that the ”robustness” of the sample mean and the sample median
statistics depends on the choice of the metrics. In particular, we obtain a quanti-
tative estimate of the ”robustness” of the sample mean, which is new in the case
of models with non-Gaussian distributions.

MSC 2000: 62F35, 60E15
Key words: probability metric, sample mean, sample median, robust estimation

1 Introduction

In the paper of Hampel [5] the concept of qualitative robustness was introduced
(see the definition in Section 3 below). According to his definition (which uses the
Prokhorov metric) the sample mean is not robust, but the sample median is ([5],
and §2.2 in [6]).

In this paper, we define an alternative concept of robustness based on the Kan-
torovich metric l (see Section 2). The use of the Kantorovich metric is justified by
its closer relation to the mean absolute error of the estimators. To give a quanti-
tative aspect to the robustness, we let it be related to some additional probability
metric µ, and call this (l − µ)-robustness.

The goal of the paper is to show that this type of robustness of estimators
crucially depends on the choice of the metric µ. We give an example of probability
metric µ for which the sample mean is (l−µ)-robust but the sample median is not.
The picture can turn over when using another metric (see Section 5).

The main result of the paper is the quantitative estimation of the (l − µ)-
robustness of the sample mean when µ is the maximum of the Kantorovich metric
and the Zolotarev metric ζ2 of order 2. More specifically, we show in Section 3 that

sup
n>1

√
nl(X̄n,

¯̃Xn) 6 cmax{l(F, F̃ ), ζ2(F, F̃ )}, (1)
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where X̄n and ¯̃Xn are the sample means for respective samples from the distribu-
tions F and F̃ , and where the constant c only depends on the model distribution
F . If we admit c = c(F, F̃ ) (which is not interesting from the statistical point of
view), the inequality of type (1) can be relatively easily derived from the properties
of the metrics l and ζ2. Some numerical examples of evaluation of the constant c
can be found in Section 4.

It is worth mentioning that this result is only new in the case of non-Gaussian
distribution F . Otherwise, inequality (1) can be obtained as a consequence of the
known estimates of the rate of convergence in the central limit theorem.

In Section 5 we discuss the (l − µ)-robustness of the sample median.

2 (l − µ)-robustness of estimators of the mean
value

LetX,X1, X2, . . . , Xn and X̃, X̃1, X̃2, . . . , X̃n be random samples from distributions
F and F̃ , respectively.

For two probability measures F and F̃ let π(F, F̃ ) be the Prokhorov metric:

π(F, F̃ ) := inf{ε : F (B) 6 F̃ (Bε) + ε for all Borel sets B ⊂ R},

where Bε = {x ∈ R : d(x,B) < ε}. In what follows, we will be applying the notation
of probability metric to random variables as well (for example π(X, X̃), etc.), taking
this as the metric applied to their distributions, i.e. π(X, X̃) ≡ π(F, F̃ ).

The following Hampel’s definition of qualitative robustness deals with a met-
ric neighborhood in the space of distribution functions rather than the standard
”contamination” neighborhood (see, for instance, [7], [8]).

Let Tn, n > 1 be some sequence of estimators of θ. According to [6] (§2.2), the
sequence {Tn, n > 1} is qualitatively robust at F if for any ε > 0 there exists δ > 0
such that for any F̃

π(F, F̃ ) < δ

entails
sup
n>1

π(Tn(X1, X2, . . . , Xn), Tn(X̃1, X̃2, . . . , X̃n)) < ε.

As noted in [5, 6], the sample mean

Tn = X̄n =
X1 +X2 + · · ·+Xn

n

is not qualitatively robust at any F .
However, the sample median is qualitatively robust at F if F−1(1/2) consists

of only one point.
To introduce an alternative concept of qualitative robustness we will use the

Kantorovich metric:
l(F,G) :=

∫ ∞

−∞
|F (x)−G(x)|dx.
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It is known (see, e.g., [11]) that

l(Xn, X) → 0 if and only if

π(Xn, X) → 0 and E|Xn| → E|X|, n→∞, (2)

so we will use a stronger metric for our definition.
Also, we will suppose that the following holds:

Assumption 1. EX = EX̃ = θ, EX2 <∞ , EX̃2 <∞.

Let µ be any probability metric.

Definition 2.1. We say that the sequence of estimators {Tn, n > 1} of the mean
θ = EX is (l − µ)-robust at F if for any ε > 0 there exists δ > 0 such that for any
F̃ satisfying Assumption 1

µ(F, F̃ ) < δ

entails
sup
n>1

√
nl(Tn(X1, . . . , Xn), Tn(X̃1, . . . , X̃n)) < ε. (3)

Remark 2.2. Since (see, for instance, [10, 11])

l(αX + b, αY + b) = αl(X,Y ), (4)

where α > 0, b ∈ R and X,Y are any random variables , we have
√
nl(Tn(X1, . . . , Xn), Tn(X̃1, . . . , X̃n) = l(

√
nTn(X1, . . . , Xn),

√
nTn(X̃1, . . . , X̃n))).

Hence, condition (3) implicitly involves the asymptotic normality of the statistics
Tn.

To advocate the above definition let us consider an example. Let

Tn(X1, . . . , Xn) = X̄n =
X1 +X2 + · · ·+Xn

n
,

Tn(X̃1, . . . , X̃n) = ¯̃Xn =
X̃1 + X̃2 + · · ·+ X̃n

n

be the sample means corresponding to the samples X1, X2, . . . , Xn and X̃1, X̃2, . . . ,
X̃n.

Suppose we measure the quality of the estimator by the mean absolute error,
i.e. we define

δn := E|X̄n − θ|, δ̃n := E| ¯̃Xn − θ|, n > 1,

and let
δ := sup

n>1

√
nδn, δ̃ := sup

n>1

√
nδ̃n, (5)

By the Hölder inequality and Assumption 1, δ <∞, δ̃ <∞.
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Proposition 2.3.
|δ − δ̃| 6 sup

n>1

√
nl(X̄n,

¯̃Xn).

Remark 2.4. If the statistics X̄n is (l − µ)-robust, and additionally we have a
”robustness” inequality (as in the Theorem below):

sup
n>1

√
nl(X̄n,

¯̃Xn) 6 cµ(F, F̃ ), (6)

then we get:
|δ − δ̃| 6 cµ(F, F̃ ).

Below, we will prove (6) with µ = max{l, ζ2}, where ζ2 is Zolotarev’s metric of order
2, and we will show (using the same µ) that inequalities as in (6) are impossible
if in place of the sample mean X̄n we take the sample medians X̂n (for symmetric
distributions).

Proof of the Proposition 2.3. Let n > 1 be arbitrary but fixed. Then

|δn − δ̃n| 6 E||X̄n − θ| − | ¯̃Xn − θ|| 6 E|X̄n − ¯̃Xn| = l(X̄n,
¯̃Xn). (7)

The last equality is true because the left-hand side of (7) depends only on the
marginal distributions of X and X̃ and l is the minimal metric for the compound
metric L(X,Y ) = E|X − Y | (see, e.g., [10, 11]). By the Kantorovich theorem (see
[11]), the joint distribution of X and Y can always be chosen in such a way that
L(X,Y ) = l(X,Y ).

Thus,

| sup
n>1

√
nδn − sup

n>1

√
nδ̃n| 6 sup

n>1

√
n|δn − δ̃n| 6 sup

n>1

√
nl(X̄n,

¯̃Xn) 6 cµ(F, F̃ ).

3 Assumptions and the robustness inequality

Assumption 2. E|X|3 <∞.
Assumption 3. There is an integer s > 1 such that the random variable X1 +
X2 + · · · + Xs has a bounded absolutely continuous density ps. The derivative p′s
is bounded, p′s ∈ L1(R), and for some α > 0∫

|x|>αn
|p′s(x)|dx = O(n−1/2) as n→∞. (8)

Let ζ2(X,Y ) be the Zolotarev metric of order 2 [10, 12, 13]:

ζ2(X,Y ) := sup
φ∈D2

|Eφ(X)− Eφ(Y )|,
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where
D2 := {φ : R → R : |φ′(x)− φ′(y)| 6 |x− y|, x, y ∈ R}.

Theorem 3.1. Let Assumptions 1–3 hold. Then there exists a constant c > 0,
depending only on the d.f. F , such that

sup
n>1

√
nl(X̄n,

¯̃Xn) 6 cmax{l(F, F̃ ), ζ2(F, F̃ )}, (9)

where l and ζ2 are, respectively, the Kantorovich and Zolotarev’s (of order 2) met-
rics.

Remark 3.2. The result is new when F is non-Gaussian. If F is a Gaussian distri-
bution, inequality (9) follows from the known estimates of the rate of convergence
in the central limit theorem. A large part of the proof is to show that the constant
c in (9) is completely determined by the model distribution F .

Remark 3.3. Under the hypotheses taken l(F, F̃ ) < ∞, ζ2(F, F̃ ) < ∞. Thus,
if µ = max{l, ζ2}, then the statistics X̄n is (l − µ)-robust (with an estimate of
robustness given in (9)).

For some particular d.f. F the constant c in (9) can be calculated (see the table
in Remark 4.4).

It is easy to show that the sample mean X̄n is not (l− µ)-robust when µ is the
total variation metric µ(X, X̃) = σ(X, X̃) (and consequently, not for the uniform
metric µ(F, F̃ ) = supx |F (x) − F̃ (x)|, nor for the Prokhorov metric µ(F, F̃ ) =
π(F, F̃ )).

The following example shows that the same can be said in the case when
µ(X, X̃) = l(X, X̃).

Example 3.4. Let X ∼ N(0, 1) and ε > 0 be arbitrary but fixed. Define

X̃ =

{
X with probability 1− ε4/3

ξ with probability ε4/3,

where

ξ =

{
1/ε with probability 1/2
−1/ε with probablity 1/2,

and ξ is independent of X (one could also use a ξ with a density).
It is easy to see that X̃ ⇒ X as ε→ 0. Moreover,

E|X̃| = E|X|(1− ε4/3) + ε1/3 → E|X|, ε→ 0.

Therefore l(X, X̃) → 0 as ε→ 0.
Obviously (in this example θ = 0),

δ =
√
nE|X̄n| =

√
2
π
.
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On the other hand,

Var(X̃) = σ2(ε) = (1− ε4/3) + ε−2/3 <∞,

and for any fixed ε > 0 √
n ¯̃Xn ⇒ ηε

where ηε ∼ N(0, σ2(ε)). Since the variances of the summands are finite, we have

E|
√
n ¯̃Xn| → E|ηε| =

√
2
π
σ(ε), as n→∞.

so that

δ̃ = sup
n>1

E|
√
n ¯̃Xn| >

√
2
π
σ(ε) →∞ as ε→ 0.

So we get l(X, X̃) → 0, but |δ − δ̃| → ∞ as ε→ 0.

Now take into account the above Proposition.

4 The proof of the Theorem

Lemma 4.1. Let X,Y, ξ be random variables such that

a) ξ is independent of X and Y;

b) EX = EY ; EX2 <∞, EY 2 <∞;

c) the random variable ξ has a bounded absolutely continuous density fξ such that
f ′ξ ∈ L1(R).

Then
l(X + ξ, Y + ξ) 6 ||f ′ξ||L1ζ2(X,Y ), (10)

where ζ2 is Zolotarev’s metric of order 2.

Proof.

l(X + ξ, Y + ξ) =
∫ ∞

−∞
dx|
∫ ∞

−∞
fξ(x− t)[FX(t)− FY (t)]dt|

=
∫ ∞

−∞
dx|
∫ ∞

−∞
fξ(x− t)d[

∫ t

−∞
[FX(τ)− FY (τ)]dτ ]|. (11)

Since fξ is bounded and EX = EY the integration by parts on the right-hand
side of (11) yields:

l(X + ξ, Y + ξ) =
∫ ∞

−∞
dx|
∫ ∞

−∞
f ′ξ(x− t)[

∫ t

−∞
[FX(τ)− FY (τ)]dτ ]dt|
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6
∫ ∞

−∞
dx

∫ ∞

−∞
|f ′ξ(x− t)||

∫ t

−∞
[FX(τ)− FY (τ)]dτ |dt

by Fubini’s theorem

=
∫ ∞

−∞
dt|
∫ t

−∞
[FX(τ)− FY (τ)dτ |

∫ ∞

−∞
|f ′ξ(x− t)|dx

= ||f ′ξ||L1

∫ ∞

−∞
dt|
∫ t

−∞
[FX(τ)− FY (τ)]dτ |. (12)

The integral term on the right-hand side of (12) is the known (see [10], §14.1)
representation of the metric ζ2.

The next lemma is the main part of the proof of Theorem 1. Hopefully it is
useful in a wider context than that of the present paper.

For n = 1, 2, . . . let Sn = X1 + X2 + · · · + Xn; S̃n = X̃1 + X̃2 + · · · + X̃n;
σ2 = Var(X) > 0 and EX = EX̃ = θ.

For n > s (see Assumption 3) denote by gn the density of the r.v. Sn/(σ
√
n).

Lemma 4.2. Under Assumptions 1-3

l(Sn, S̃n) 6 cn1/2 max{l(F, F̃ ), ζ2(F, F̃ )}, (13)

where
c = max{(10s− 1)1/2, 5.4d/σ} (14)

and
d = sup

n>s

∫ ∞

−∞
|g′n(x)|dx <∞. (15)

Remark 4.3. By (4)

l(Sn, S̃n) =
√
nl(

Sn − nθ√
n

,
S̃n − nθ√

n
).

For EX2 6= EX̃2 by the central limit theorem we get that

lim inf
n→∞

l(
Sn − nθ√

n
,
S̃n − nθ√

n
) > 0.

Thus, the rate n1/2 on the right-hand side of (13) can not be reduced.
Remark 4.4. The constant c in (13), (14) is completely determined by the distribu-
tion function F of X. The constant d in (15) can be calculated in some particular
cases numerically, using the fact that under our hypotheses∫ ∞

−∞
|g′n(x)|dx→

∫ ∞

−∞
|( 1√

2π
e−x

2/2)′|dx as n→∞.

For, instance we have the following estimates of the constants for normal,
gamma, and uniform distributions:
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Distribution d < c <

N(0, σ) 0.798 max{3, 4.31/σ}
(s=1)

Γ (2, λ) 1.040 max{3, 3.98/λ}
(s=1)

U [0, a] 0.817 max{4.36, 15.29/a}
(s=2)

The proof of Lemma 2 uses an improved version of the technique given in [3]
and the standard methods of probabilistic metrics in the framework of the central
limit theorem (see, for instance, [10], [12]).

Making use of the resuts in [4] it is possible to prove a version of inequality (13)
for i.i.d. random vectors.

Proof. Let the integer s and α > 0 be from Assumption 3.
For n > s we denote by fn and gn the densities of the random variables Sn

and Sn/(σ
√
n), respectively. First, we show the existence of a finite constant d

(depending on the distribution function F of the r.v. X) such that

sup
n>s

||g′n|| 6 d, (16)

where (here and in what follows)

||φ|| = ||φ||L1 =
∫ ∞

−∞
|φ(x)|dx.

We have (n > s)

||g′n|| =
∫
|x|62

√
nα/σ

|g′n(x)|dx+
∫
|x|>2

√
nα/σ

|g′n(x)|dx. (17)

Assumption 3 implies the conditions of Theorem 7 in [9], Ch. VI. Therefore

g′n(x) =
1√
2π

d2

dx2

[∫ x

−∞
e−t

2/2dt− e−x
2/2EX

3(x2 − 1)
6σ3

√
n

]
+O(n−1/2) as n→∞,

(18)
where the term O(n−1/2) can be chosen independent of x ∈ R.

From (18) it follows that the first summands in (17) are uniformly bounded in
n.

For n > s (see Assumption 3):

fn(x) =
∫ ∞

−∞
ps(x− t)fn−s(t)dt (19)
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and since p′s is bounded and it belongs to L1(R) we can differentiate under the sigh
of integral in (19) (almost everywhere on R, see [2], Appendix A)

f ′n(x) =
∫ ∞

−∞
p′s(x− t)fn−s(t)dt.

Also g′n(x) = σ2nf ′n(σ
√
nx). Thus (applying Fubini’s theorem),∫

|x|>2
√
nα/σ

|g′n(x)|dx = σ
√
n

∫
|z|>2αn

dz|
∫ ∞

∞
p′s(z − t)fn−s(t)dt|

6 σ
√
n

∫
|t|6αn

fn−s(t)dt
∫
|z|>2αn

|p′s(z − t)|dz

+σ
√
n

∫
|t|>αn

fn−s(t)dt
∫
|z|>2αn

|p′s(z − t)|dz = I1,n + I2,n.

By (8)

I1,n 6 σ
√
n

∫
|t|6αn

fn−s(t)dt
∫
|y|>αn

|p′s(y)|dy = O(1). (20)

Also,
I2,n 6 σ

√
n||p′s||P (|X1 +X2 + · · ·+Xn−s| > αn)

6 σ
√
n||p′s||

(n− s)σ2

αn2
= O(n−1/2). (21)

Finally, from (17), (20), (21) it follows (16).
Let us turn now to the proof of inequality (13). Because of the regularity of the

metric l (see, e.g. [11]):
l(Sn, S̃n) 6 nl(X1, X̃1).

Thus, inequalities (13) hold for n 6 10s− 1, provided that

c > (10s− 1)1/2. (22)

For n > 10s let m = [9n/10].
For independent r.v.’s X,Z,U, V we have ([11], §8.1):

l(X + U,Z + U) 6 l(X,Z)σ(U, V ) + l(Z + V,Z + V ). (23)

Let Sk,n = Xk+1 + · · ·+Xn, S̃k,n = X̃k+1 + · · ·+ X̃n, 0 6 k 6 n.
Applying the triangular inequality and (23) to X = Sm,n, Z = S̃m,n, U = S̃0,m,

V = S0,m we get
l(Sn, S̃n) = l(S0,m + Sm,n, S̃0,m + S̃m,n)

6 l(S0,m + Sm,n, S̃0,m + S̃m,n) + l(S̃0,m + Sm,n, S̃0,m + S̃m,n)

6 l(S0,m + Sm,n, S̃0,m + Sm,n) + l(S0,m + Sm,n, S0,m + S̃m,n)
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+l(Sm,n, S̃m,n)σ(S0,m, S̃0,m). (24)

Applying (10) and (16) we get

T1 = l(S0,m + Sm,n, S̃0,m + Sm,n)

= σ
√
n−ml(

S0,m

σ
√
n−m

+
Sm,n

σ
√
n−m

,
S̃0,m

σ
√
n−m

+
Sm,n

σ
√
n−m

)

6 σ
√
n−mdζ2(

S0,m

σ
√
n−m

,
S̃0,m

σ
√
n−m

)

6 d
1

σ
√
n−m

mζ2(X, X̃), (25)

since (see, e.g. [10],[12],[13])

ζ2(a
k∑
1

Xi, a
k∑
1

X̃i) 6 a2
k∑
1

ζ2(Xi, X̃i)

(a > 0, X1, X2, . . . , Xk; X̃1, X̃2, . . . X̃k are independent).
By (25) we get

T1 6
d

σ

[ 9
10n]

(n− [ 9
10n])1/2

µ,

where µ = max{l, ζ2}. Or, by simple calculations (n > 10s)

T1 6 2.85
d

σ

√
nµ. (26)

Similarly,
T2 = l(Sm,n + S0,m, S̃m,n + S0,m)

6
d(n− [ 9

10n])

σ
√

[ 9
10n]

ζ2(X, X̃) 6 0.21
d

σ

√
nµ, n > 10s. (27)

Combining inequalities (24)–(27) and taking into account that σ(S0,m, S̃0,m) 6 2
we get for n > 10s.

l(Dn, S̃n) 6 3.06
d

σ

√
nµ+ 2l(Sm,n, S̃m,n).

Making the induction assumption

l(Sk, S̃k) 6 c
√
kµ
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we get

l(Sn, S̃n) 6 µ
√
n

[
3.06

d

σ
+
(

1− 1
n

[
9
10
n]
)1/2

c

]
6 µ

√
n

[
3.06

d

σ
+ 0.43c

]
Thus, the induction would be fulfilled if

c > (10s− 1)1/2 and c > 3.06
d

σ
+ 0.43c.

Finally, we take c = max{(10s− 1)1/2, 5.4 dσ}.
The end of the proof of the Theorem.

5 Some robust properties of sample median

The common opinion is that ”the sample median is more robust than the sample
mean” (see, for example, [5, 6, 7]). This is true in many different senses but right
now we will give an example showing something opposite.

LetX(1) < X(2) < · · · < X(n) be the order statistics corresponding to the sample
X1, X2, . . . Xn.

The sample median is defined as

X̂n =

{
X(k+1) if n=2k+1,
1
2 (Xk +X(k+1)) if n=2k.

We will show that in the situation of the above Theorem the sample median X̂n

may not be (l − µ)-robust with respect to the metric µ = max{l, ζ2} (while the
sample mean is (l − µ)-robust).

Example 5.1. Let X ∼ N(0, 1) and 1 > ε > 0. We choose the density fX̃ of F as
follows:

fX̃(x) =
1
c(ε)

(ε+
x2

ε3 + x2
) exp{−x2/2},

where c(ε) =
∫∞
−∞(ε+ x2

ε3+x2 ) exp{−x2/2}dx.
It is easy to see that:

1. fX̃ ∈ C1(R);

2. supε>0 fX̃(x) 6 b <∞;

3. EX̃ = 0;

and that µ(X, X̃) → 0 as ε → 0 (using the definition of the metric l and the
inequality

ζ2(X,Y ) 6
1
2

∫ ∞

−∞
x2|fX(x)− fY (x)|dx (28)
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which is valid provided that EX = EY and r.v.’s X and Y have densities fX and
fY respectively, see [10]).

On the other hand, it is known that (see, for example, [1], §1.8)

√
n ˆ̃Xn ⇒ ηε ∼ N(0, 1/(4f2

X̃
(0))) = N(0,

c2(ε)
4ε2

) (29)

as n→∞, where ˆ̃Xn is the sample median corresponding to X̃1, . . . , X̃n.
For any ε > 0 EX̃2 <∞, thus from (29) it follows that

√
nE| ˆ̃Xn| → E|ηε| =

√
2
π

c(ε)
2ε

.

On the other hand,
√
nE|X̂n| → E|η| =

√
2
π

for a standard normal r.v. η. As in (5) we define (recall that θ = 0)

∆ = sup
n>1

√
nE|X̂n| <∞,

∆̃ = sup
n>1

√
nE| ˆ̃Xn| >

√
2
π

c(ε)
2ε

.

So we get µ(X, X̃) = max{l(X, X̃), ζ2(X, X̃)} → 0 but |∆− ∆̃| → ∞ as ε→ 0.
Finally, we note that an analogue of the Proposition of Section 2 holds with δ

replaced by ∆.

Remark 5.2. The type of the deviation from the model considered in the above
example is rather ”exotic”. Also, this example suggests that the statistic X̂n can
be robust with respect to the total variation distance or the distance

d(X,Y ) = esssupx∈R|fX(x)− fY (x)|

(supposing that the density functions fX and fY of X and Y , respectively, exist).
Possibly (and likely) this is true if one considers asymptotic robustness. In our
setting it is not the case. Indeed,

∆ > E|X̂1 − θ| = E|X1 − θ|

and a suitable ”smooth” modification of Example 1 shows that it can be that
|E|X1 − θ| − E|X̃1 − θ|| → ∞ while d(X1, X̃1) → 0.

It seems that some positive result on the (l−µ)-robustness of the sample median
could be found combining the metrics d and l.

Consider the class Q of r.v.’s such that for X ∈ Q

a) θ = EX exists;
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b) X has a density fX which is symmetric with respect to θ;

c) for some q > 0
inf
X∈Q

fX(θ) > q;

d) fX is continuous at θ.

For m = 1, 2, . . . let X,X(m) ∈ Q and let X̂n, X̂
(m)
n be the sample medians

corresponding to (X1, X2, . . . , Xn) and (X(m)
1 , X

(m)
2 , . . . , X

(m)
n ), respectively. Ad-

ditionally, we assume that θ = EX = EX̂(m).

Conjecture. If max{d(X,X(m)), l(X,X(m))} → 0 as m→∞ then

sup
n>1

√
nl(X̂n, X̂

(m)
n ) → 0.
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