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Abstract: A general problem of testing two simple hypotheses about the distribution
of a discrete-time stochastic process is considered. The main goal is to minimize an
average sample number over all sequential tests whose error probabilities do not exceed
some prescribed levels. As a criterion of minimization, the average sample number
under a third hypothesis is used (modified Kiefer-Weiss problem).

For a class of sequential testing problems, the structure of optimal sequential tests
is characterized. An application to the Kiefer-Weiss problem for discrete-time stochas-
tic processes is proposed. As another application, the structure of Bayes sequential
tests for two composite hypotheses, with a fixed cost per observation, is given. The
results are also applied for finding optimal sequential tests for discrete-time Markov
processes. In a particular case of testing two simple hypotheses about a location
parameter of an autoregressive process of order 1, it is shown that the sequential prob-
ability ratio test has the Wald-Wolfowitz optimality property.
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1 INTRODUCTION. PROBLEM SETTING.

Let X1, X2, . . . , Xn, . . . be a discrete-time stochastic process with a distribution P .
We consider the problem of testing a simple hypothesis H0 : P = P0 versus a simple
alternative H1 : P = P1. The main goal of this article is to characterize the structure
of optimal sequential tests in this problem.

We suppose that, under Hi, for any n = 1, 2, . . . , the vector (X1, X2, . . . , Xn) has
a probability “density” function

fni = fni (x1, x2, . . . , xn) (1.1)

(Radon-Nikodym derivative of its distribution) with respect to a product-measure

µn = µ⊗ µ⊗ · · · ⊗ µ︸ ︷︷ ︸,
n times
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with some σ-finite measure µ on the respective space, i = 0, 1.
Let us define a (randomized) sequential hypothesis test as a pair (ψ, φ) of a stopping

rule ψ and a decision rule φ (see, for example, Wald (1950), Ferguson (1967), DeGroot
(1970), Ghosh (1970), Ghosh, Mukhopadhyay and Sen (1997)), with the following
interpretation.

It is supposed that

ψ = (ψ1, ψ2, . . . , ψn, . . . ) and φ = (φ1, φ2, . . . , φn, . . . ) ,

where the functions

ψn = ψn(x1, x2, . . . , xn) and φn = φn(x1, x2, . . . , xn)

are supposed to be measurable functions with values in [0, 1], n = 1, 2, . . . .
The experiment starts with obtaining the value x1 of the first observation of X1

(stage n = 1). For any stage n = 1, 2, . . . , the value of ψn(x1, . . . , xn) is interpreted
as the conditional probability to stop and proceed to decision making, given that the
experiment came to stage n and that the observations of (X1, X2, . . . , Xn) up to this
stage were (x1, x2, . . . , xn). If there is no stop, the experiments continues to the next
stage and an additional observation xn+1 of Xn+1 is taken. Then the rule ψn+1 is
applied to x1, x2, . . . , xn, xn+1 in the same way as as above, etc., until the experiment
eventually stops.

It is supposed that when the experiment stops, a decision to accept or to reject H0 is
to be made. The function φn(x1, . . . , xn) is interpreted as the conditional probability
to reject the null-hypothesis H0, given that the experiment stops at stage n being
(x1, . . . , xn) the data vector observed.

The stopping rule ψ generates, by the above process, a random variable τψ (stop-
ping time) whose distribution is given by

P (τψ = n) = E(1− ψ1)(1− ψ2) . . . (1− ψn−1)ψn. (1.2)

In (1.2), we suppose that ψn = ψn(X1, X2, . . . , Xn), unlike its previous definition as
ψn = ψn(x1, x2, . . . , xn). We do this intentionally and systematically throughout the
paper, applying, generally, for any Fn = Fn(x1, x2, . . . , xn) or Fn = Fn(X1, X2, . . . , Xn),
the following rule: if Fn is under the probability or expectation sign, then it is
Fn(X1, . . . , Xn), otherwise it is Fn(x1, . . . , xn).

For a sequential test (ψ, φ) let us define the type I error probability as

α(ψ, φ) = P0({reject H0} ∩ {τψ <∞}) =

∞∑
n=1

E0(1− ψ1) . . . (1− ψn−1)ψnφn, (1.3)

and the type II error probability as

β(ψ, φ) = P1({accept H0}∩{τψ <∞}) =

∞∑
n=1

E1(1−ψ1) . . . (1−ψn−1)ψn(1−φn) (1.4)

(here, and in what follows, Ei(·) stands for the expectation with respect to Pi, i = 0, 1).
Typically, one would like to keep the error probabilities below some specified levels:

α(ψ, φ) ≤ α and β(ψ, φ) ≤ β, (1.5)

with some α, β ∈ [0, 1).
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To characterize the number of observations until the final decision is taken, the
average sample number is used:

N (ψ) = Eτψ. (1.6)

If P (τψ <∞) =
∑∞
n=1 P (τψ = n) = 1, then

N (ψ) =

∞∑
n=1

nE(1− ψ1) . . . (1− ψn−1)ψn (1.7)

(see (1.2)), otherwise N (ψ) = ∞.
We suppose that the distribution of the process X1, X2, . . . , Xn, . . . used for cal-

culating (1.6) does not necessarily match one of the hypothesized distribution P0 or
P1. Instead, we are using any (fixed) distribution P of the process X1, X2, . . . , Xn, . . . .
Let fn = fn(x1, x2, . . . , xn) be the corresponding “density” of (X1, X2, . . . , Xn), with
respect to µn, when the process follows the distribution P , n = 1, 2, . . . .

Our main goal is minimizing N (ψ) over all sequential tests subject to (1.5). Let
us refer to this problem as to hypothesis testing problem (P, P0, P1).

For independent and identically distributed (i.i.d.) observations, using P = P0 or
P = P1 as a criterion of minimization in (1.6) is typical for the problem of sequential
hypotheses testing (see Wald and Wolfowitz (1948), Wald (1950), Ferguson (1967),
DeGroot (1970), Ghosh (1970), among many others). Minimizing N (ψ) for P different
from both P0 and P1 is known as the modified Kiefer-Weiss problem, being the original
Kiefer-Weiss problem minimizing supP N (ψ) under (1.5) (see Kiefer and Weiss (1957),
Weiss (1962), Lorden (1980), Schmitz (1993)).

In Section 2, we reduce the problem of minimizing N (ψ) under constraints (1.5) to
a non-constrained minimization problem, with a Lagrange-multiplier function L(ψ, φ)
as an objective function. Then we reduce further the problem of minimization, by
finding

L(ψ) = inf
φ
L(ψ, φ).

In Section 3, we solve the problem of minimization of L(ψ), first in the class of
truncated stopping rules, then, for a class of problems called truncatable, in the class
of all stopping rules. In each case we obtain necessary and sufficient conditions of
optimality.

In Section 4, we give some applications of our results to some general problems for
discrete-time stochastic processes: to the Kiefer-Weiss problem, and to its modified
version, to the Bayesian sequential testing of two composite hypotheses, and to optimal
sequential tests for discrete-time Markov processes.

In Section 5, we lay down the proofs of the main results.

2 REDUCTION TO AN OPTIMAL STOPPING PROBLEM

To proceed with minimizing (1.6) over the tests subject to (1.5) let us define the
following Lagrange-multiplier function:

L(ψ, φ) = L(ψ, φ;λ0, λ1) = N (ψ) + λ0α(ψ, φ) + λ1β(ψ, φ) (2.1)

where λ0 ≥ 0 and λ1 ≥ 0 are some constant multipliers.
The following theorem is nothing else than an application of the Lagrange multi-

plier method to the conditional problem above.
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Theorem 2.1. Let ∆ be some class of sequential tests. Let exist λ0 > 0 and λ1 > 0
and a test (ψ, φ) ∈ ∆ such that L(ψ, φ;λ0, λ1) < ∞, and such that for any other test
(ψ′, φ′) ∈ ∆

L(ψ, φ;λ0, λ1) ≤ L(ψ′, φ′;λ0, λ1) (2.2)

holds and such that
α(ψ, φ) = α and β(ψ, φ) = β. (2.3)

Then for any test (ψ′, φ′) ∈ ∆ satisfying

α(ψ′, φ′) ≤ α and β(ψ′, φ′) ≤ β (2.4)

it holds
N (ψ) ≤ N (ψ′). (2.5)

The inequality in (2.5) is strict if at least one of the inequalities in (2.4) is strict.

Proof. It is quite straightforward:
Let (ψ′, φ′) ∈ ∆ be any test satisfying (2.4). Because of (2.3) and (2.2),

N (ψ) + λ0α+ λ1β = N (ψ) + λ0α(ψ, φ) + λ1β(ψ, φ) (2.6)

≤ N (ψ′) + λ0α(ψ′, φ′) + λ1β(ψ′, φ′) (2.7)

≤ N (ψ′) + λ0α+ λ1β, (2.8)

where to get the last inequality we used (2.4).
It follows from (2.6) – (2.8) that

N (ψ) ≤ N (ψ′).

The get the last statement of the theorem we note that if N (ψ) = N (ψ′) then
there are equalities in (2.7) – (2.8) instead of the inequalities which is only possible if
α(ψ′, φ′) = α and β(ψ′, φ′) = β.

Remark 2.1. In fact, the method of Lagrange multipliers is used (sometimes implic-
itly) in various hypotheses testing problems, e.g., in Kiefer and Weiss (1957), Weiss
(1962), Berk (1975), Lorden (1980), Castillo and Garćıa (1983), Müller-Funk et al.
(1985), Schmitz (1993). In essence, the method of Lagrange multipliers is used in
Lehmann (1959) in the proof of the fundamental lemma of Neyman-Pearson, where,
to minimize β(ψ, φ) among all (non-sequential) tests such that α(ψ, φ) ≤ α, the mini-
mum of β(ψ, φ) + λα(ψ, φ) is found.

In a way, the Bayesian approach in hypotheses testing can be considered as a vari-
ant of the Lagrange multipliers method as well. If, in particular, P = πP0+(1−π)P1 in
our definition (1.6) above, with some π, 0 < π < 1, then the Lagrange-multiplier func-
tion (2.1) is nothing else than the Bayesian risk (see Wald and Wolfowitz (1948), Wald
(1950), Lehmann (1959), Ferguson (1967), DeGroot (1970), Zacks (1971), Shiryayev
(1978), Cochlar and Vrana (1978), Liu and Blostein (1992), Ghosh, Mukhopadhyay
and Sen (1997), among many others), and the classical proofs of the optimality of the
sequential probability ratio test (SPRT) for i.i.d. observations are using arguments of
type of Theorem 2.1 (see, e.g., Wald and Wolfowitz (1948), Lehmann (1959), Ferguson
(1967)).
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Because of Theorem 2.1, from now on, our main focus will be on the unrestricted
minimization of L(ψ, φ) = L(ψ, φ;λ0, λ1), over all sequential tests, for any λ0 > 0 and
λ1 > 0.

For any stopping rule ψ = (ψ1, ψ2, . . . ) let us denote

sψn = (1− ψ1) . . . (1− ψn−1)ψn and cψn = (1− ψ1) . . . (1− ψn−1), (2.9)

for any n = 1, 2, . . . .
Let IA be the indicator function of the event A.
The following theorem, in a rather standard way, lets us find optimal decision rules

for any given stopping rule ψ.

Theorem 2.2. For any λ0 ≥ 0 and λ1 ≥ 0 and for any sequential test (ψ, φ)

λ0α(ψ, φ) + λ1β(ψ, φ) ≥
∞∑
n=1

∫
sψn min{λ0f

n
0 , λ1f

n
1 }dµn (2.10)

with an equality if and only if

I{λ0f
n
0 <λ1f

n
1 } ≤ φn ≤ I{λ0f

n
0 ≤λ1f

n
1 } (2.11)

µn-almost everywhere on Sψn =
{
(x1, . . . , xn) : sψn(x1, . . . , xn) > 0

}
for any n = 1, 2, . . . .

The proof of Theorem 2.2 can be found in Appendix.
Let us denote

L(ψ) = L(ψ;λ0, λ1) = inf
φ
L(ψ, φ;λ0, λ1).

Corollary 2.1. If P (τψ <∞) = 1, then

L(ψ) =

∞∑
n=1

∫
sψn(nfn + ln)dµn, (2.12)

where, by definition,
ln = min{λ0f

n
0 , λ1f

n
1 }. (2.13)

If P (τψ <∞) < 1 then L(ψ) = ∞.

Proof. This follows from Theorem 2.2 by (2.1), in view of (1.7).

Remark 2.2. Theorem 2.2 establishes the form of optimal decision rules, which turn
out to be Bayesian. It is essentially Theorem 5.2.1 in Ghosh, Mukhopadhyay and Sen
(1997) applied to the natural 0-1 loss function (see also Cochlar and Vrana (1978)).

By Theorem 2.2, the problem of minimization of L(ψ, φ;λ0, λ1) is reduced now to
the problem of minimization of L(ψ;λ0, λ1), that is, to an optimal stopping problem.
Indeed, if there is a ψ such that

L(ψ;λ0, λ1) = inf
ψ′
L(ψ′;λ0, λ1),

then, adding to ψ any decision rule φ satisfying (2.11), by Theorem 2.2 we have that
for any sequential test (ψ′, φ′):

L(ψ, φ;λ0, λ1) = L(ψ;λ0, λ1) ≤ L(ψ′;λ0, λ1) ≤ L(ψ′, φ′;λ0, λ1). (2.14)

In particular, in this way we obtain tests (ψ, φ) satisfying (2.2), which is crucial for
solving the original conditional problem (see Theorem 2.1).
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3 OPTIMAL STOPPING RULES

In this section, we characterize the structure of stopping rules minimizing L(ψ), first in
the class of truncated stopping rules, then in the class of all stopping rules, supposing
that the hypothesis testing problem is truncatable.

3.1 Optimal Truncated Stopping Rules

Here we solve the problem of minimization of L(ψ) in the class of truncated stopping
rules, that is, in the class DN of

ψ = (ψ1, ψ2, . . . , ψN−1, 1, . . . ). (3.1)

The following lemma takes over a large part of work of doing this.

Lemma 3.1. Let k ≥ 1 be any natural number, and let vk+1 = vk+1(x1, x2, . . . , xk+1)
be any non-negative measurable function. Then

k∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψk+1

(
(k + 1)fk+1 + vk+1

)
dµk+1

≥
k−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψk

(
kfk + vk

)
dµk, (3.2)

where
vk = min{lk, fk +Rk}, (3.3)

being

Rk = Rk(x1, . . . , xk) =

∫
vk+1(x1, . . . , xk+1)dµ(xk+1).

There is an equality in (3.2) if and only if

I{lk<fk+Rk} ≤ ψk ≤ I{lk≤fk+Rk} (3.4)

µk-almost everywhere on Cψk = {(x1, . . . , xk) : cψk (x1, . . . , xk−1) > 0}.

We lay down the proof of Lemma 3.1 in Appendix.
Applying Lemma 3.1 to the Lagrange-multiplier function

LN (ψ) =

N−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψN

(
NfN + lN

)
dµr (3.5)

of any truncated stopping rule ψ ∈ DN , consecutively for k = N − 1, N − 2, . . . , r, we
easily have

Theorem 3.1. Let ψ ∈ DN be any (truncated) stopping rule. Then for any 1 ≤ r ≤
N − 1 the following inequalities hold true

LN (ψ) ≥
r∑

n=1

∫
sψn(nfn + ln)dµn +

∫
cψr+1

(
(r + 1)fr+1 + V Nr+1

)
dµr+1 (3.6)

≥
r−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψr

(
rfr + V Nr

)
dµr, (3.7)

6



where V NN ≡ lN , and recursively for k = N − 1, N − 2, . . . 1

V Nk = min{lk, fk +RNk }, (3.8)

being

RNk = RNk (x1, . . . , xk) =

∫
V Nk+1(x1, . . . , xk+1)dµ(xk+1). (3.9)

The lower bound in (3.7) is attained if and only if

I{lk<fk+RN
k
} ≤ ψk ≤ I{lk≤fk+RN

k
} (3.10)

µk-almost everywhere on Cψk , for any k = r, r + 1, . . . , N − 1.

In particular, for r = 1 we have

Corollary 3.1. For any ψ ∈ DN

L(ψ) ≥ 1 +RN0 , (3.11)

where

RN0 =

∫
V N1 (x1)dµ(x1).

There is an equality in (3.11) if and only if ψk satisfy (3.10) µk-almost everywhere on
Cψk , for any k = 1, 2, . . . , N − 1.

Remark 3.1. For the Bayesian problem (when P = πP0+(1−π)P1 with π ∈ (0, 1)), an
optimal truncated (non-randomized) stopping rule can also be obtained from Theorem
5.2.2 in Ghosh, Mukhopadhyay and Sen (1997).

Remark 3.2. Despite that any ψ such that L(ψ) = 1 + RN0 , by Theorem 3.1, is
optimal in the class DN of all truncated rules, it only makes practical sense if

min{λ0, λ1} > 1 +RN0 .

The reason is that l0 = min{λ0, λ1} can be considered as “the L(ψ)” function for
a trivial sequential test (ψ0, φ0) which, without taking any observations, makes the
decision φ0 = I{λ0≤λ1}. In this case there are no observations (N (ψ0) = 0) and it is
easily seen that

L(ψ0, φ0) = λ0α(ψ0, φ0) + λ1β(ψ0, φ0) = min {λ0, λ1} = l0.

Thus, the inequality
l0 ≤ 1 +RN0

means that the trivial test (ψ0, φ0) is not worse than the best truncated test in DN .

3.2 Optimal Non-Truncated Stopping Rules

In this section we characterize the structure of general sequential tests minimizing
L(ψ) = L(ψ;λ0, λ1) (see (2.1)).

Let us define for any stopping rule ψ, and for any natural N ≥ 1,

LN (ψ) = LN (ψ;λ0, λ1) = L(ψN ;λ0, λ1),

where ψN = (ψ1, ψ2, . . . , ψN−1, 1, . . . ) is the rule ψ truncated at N .
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By (3.5),

LN (ψ) =

N−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψN

(
NfN + lN

)
dµN . (3.12)

Because ψN is truncated, the results of the preceding section apply, in particular,
the inequalities of Theorem 3.1.

The idea of what follows is to make N → ∞, to obtain some lower bounds for
L(ψ) from (3.6) - (3.7). To do this, we need some conditions which guarantee that
LN (ψ) → L(ψ) as N →∞.

Let us call a hypothesis testing problem (P, P0, P1) truncatable if for any λ0 > 0
and λ1 > 0 it holds

lim
N→∞

LN (ψ;λ0, λ1) = L(ψ;λ0, λ1) (3.13)

for any stopping rule ψ such that P (τψ <∞) = 1.
The following lemma characterizes the property of being a problem truncatable.

Lemma 3.2. The hypothesis testing problem (P, P0, P1) is truncatable if and only if
for any stopping rule ψ, such that Eτψ <∞, for any λ0 > 0, λ1 > 0 it holds

lim
n→∞

∫
cψn min{λ0f

n
0 , λ1f

n
1 }dµn = 0. (3.14)

The proof of Lemma 3.2 can be found in Appendix.

Corollary 3.2. The hypothesis testing problem (P, P0, P1) is truncatable if any of the
following three conditions is satisfied:

i) for any stopping rule ψ, from Eτψ <∞ it follows that

P0(τψ <∞) = 1 or P1(τψ <∞) = 1, (3.15)

ii) for some λ0 > 0 and λ1 > 0

lim
n→∞

∫
min{λ0f

n
0 , λ1f

n
1 }dµn = 0.

iii)
fn1 (X1, . . . , Xn)

fn0 (X1, . . . , Xn)
→ 0, as n→∞,

in P0-probability.

Because of its technical character, we lay down the proof of Corollary 3.2 in Ap-
pendix.

Remark 3.3. In fact, conditions ii) and iii) of Corollary 3.2 are equivalent. It is
easily seen from its proof.

Corollary 3.3. Any Bayesian hypotheses testing problem ((πP0 + (1− π)P1, P0, P1),
π ∈ (0, 1)) is truncatable.

Proof. In this case fn = πfn0 + (1− π)fn1 with some π ∈ (0, 1). Thus,

N (ψ) = πE0τψ + (1− π)E1τψ <∞

implies that (3.15) is satisfied. By Corollary 3.2, it follows that the problem is trun-
catable.

8



Corollary 3.4. Any of the hypotheses testing problems (P0, P0, P1) and (P1, P0, P1)
is truncatable.

Proof. Indeed, if, for example, E0τψ <∞, then (3.15) is trivial, so, by Corollary 3.2,
the problem (P0, P0, P1) is truncatable.

The second fact we need for passing to the limit in (3.6) – (3.7) is about the
behaviour of the functions V Nk defined by (3.8).

Lemma 3.3. For any k ≥ 1 and for any N ≥ k

V Nk ≥ V N+1
k . (3.16)

Proof. By induction over k = N,N − 1, . . . , 1.
Let k = N . Then by (3.8)

V N+1
N = min{lN , fN +

∫
V N+1
N+1 dµ(xN+1)} ≤ lN = V NN .

If we suppose that (3.16) is satisfied for some k, N ≥ k > 1, then

V Nk−1 = min{lk−1, f
k−1 +

∫
V Nk dµ(xk)}

≥ min{lk−1, f
k−1 +

∫
V N+1
k dµ(xk)} = V N+1

k−1 .

Thus, (3.16) is satisfied for k − 1 as well, which completes the induction.

It follows from Lemma 3.3 that for any fixed k ≥ 1 the sequence V Nk is non-
increasing. So, there exists

Vk = lim
N→∞

V Nk . (3.17)

Passing to the limit, as N →∞, in (3.6) – (3.7), we get

Lemma 3.4. If the hypothesis testing problem (P, P0, P1) is truncatable, then for any
stopping rule ψ and for any r ≥ 1 the following inequalities hold

L(ψ) ≥
r∑

n=1

∫
sψn(nfn + ln)dµn +

∫
cψr+1

(
(r + 1)fr+1 + Vr+1

)
dµr+1 (3.18)

≥
r−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψr (rfr + Vr) dµ

r, (3.19)

where
Vk = min{lk, fk +Rk}, (3.20)

with
Vk = lim

N→∞
V Nk , k = 1, 2, 3, . . .

and

Rk = Rk(x1, x2, . . . , xk) =

∫
Vk+1(x1, . . . , xk+1)dµ(xk+1), k = 0, 1, 2, . . . (3.21)

In particular, for any stopping rule ψ

L(ψ) ≥ 1 +R0. (3.22)
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Proof. The left-hand side of (3.6) tends to the left-hand side of (3.18), as N → ∞,
because the problem is truncatable. The right-hand side of (3.6) tends to the right-
hand side of (3.18), as N → ∞, by the monotone convergence theorem, in view of
Lemma 3.3. The right-hand side of (3.7) tends to the right-hand side of (3.19) by the
same reason. At last, passing to the limit, as N →∞, on the both sides of (3.8) gives
us (3.20).

The following lemma shows that, for a truncatable testing problem, the lower
bound in (3.22) is, in fact, the infimum value of the left-hand side of (3.22).

Lemma 3.5. If the hypothesis testing problem (P, P0, P1) is truncatable, then

inf
ψ
L(ψ) = 1 +R0. (3.23)

The proof of Lemma 3.5 is laid down in Appendix.

Remark 3.4. Again (see Remark 3.1), for Bayesian problems Lemma 3.5 can be
obtained from Theorem 5.2.3 in Ghosh, Mukhopadhyay and Sen (1997), applying it to
the natural 0-1 loss function.

At last, the following theorem characterizes all optimal stopping rules in the hy-
pothesis testing problem (P, P1, P2), if this is truncatable.

Theorem 3.2. Let the testing problem (P, P0, P1) be truncatable. Then

L(ψ) = inf
ψ′
L(ψ′) (3.24)

if and only if

I{lk<fk+Rk} ≤ ψk ≤ I{lk≤fk+Rk} (3.25)

µk-almost everywhere on Cψk , for any k = 1, 2, . . . .

The proof of Theorem 3.2 can be found in Appendix.

Remark 3.5. Once again (see Remark 3.2), the optimal stopping rule ψ from Theorem
3.2 only makes sense if l0 > 1 +

∫
V1dµ(x1), because otherwise the trivial rule which

does not take any observations, gives a lesser value (l0) than L(ψ).

Remark 3.6. In a particular case of Bayesian hypothesis testing, when P = πP0 +
(1 − π)P1 with some π ∈ (0, 1), Theorem 3.2 gives all optimal stopping rules for the
Bayesian problem considered in Cochlar and Vrana (1978). To prove the existence of
the optimal stopping rule, Cochlar and Vrana (1978) used the general theory of optimal
stopping (see, for example, Chow et al. (1971) or Shiryayev (1978)). Our direct
treatment of a (more general) stopping problem here gives a more specific structure
of optimal stopping rules in the Bayesian problem considered in Cochlar and Vrana
(1978).

In the case of independent observations, Liu and Blostein (1992) give the structure
of a Bayesian stopping rule for the problem of testing a simple hypothesis against a
simple alternative. Their treatment of the problem is based on a direct approach of
Ferguson (1967). Our Theorem 3.2, based on the same principles (see also Ghosh,
Mukhopadhyay and Sen (1997)), allows to characterize the structure of all Bayesian
stopping rules in this problem (see Novikov (2008a) for details). The solution of the
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(conditional) problem of minimizing the average sample number under restrictions on
the type I and type II error probabilities, was not so successful in Liu and Blostein
(1992) (see Schmitz (1995)). Using our approach, we were able to characterize the
structure of optimal sequential tests in the conditional problem as well (see Novikov
(2008a)).

If the problem (P, P0, P1) is not truncatable, we still can use the results obtained
above, restricting the class of stopping rules to the class F of truncatable stopping
rules ψ, i.e. such that limN→∞ LN (ψ) = L(ψ) whenever P (τψ <∞) = 1. It is easy to
see that for this class

inf
ψ∈F

L(ψ) = 1 +R0

still holds (see the proof of Lemma 3.5).
So a variant of Theorem 3.2 can be formulated as follows.

Theorem 3.3. If there is a ψ ∈ F such that

L(ψ) = inf
ψ′∈F

L(ψ′) (3.26)

then

I{lk<fk+Rk} ≤ ψk ≤ I{lk≤fk+Rk} (3.27)

µk-almost everywhere on Cψk , for any k = 1, 2, . . . .
On the other hand, if a stopping rule ψ satisfies (3.27) µk-almost everywhere on

Cψk , for any k = 1, 2, . . . , and ψ ∈ F , then for this ψ (3.26) holds.

Thus, if there exists an optimal stopping rule in F , then it can be found by (3.27)
for k = 1, 2, . . . . And if a stopping rule ψ satisfying (3.27), µk-almost everywhere on
Cψk , for k = 1, 2, . . . , fails to belong to F , then there is no optimal stopping rule in
F . It is worth noting that even in this case, we can find a sequence of truncated
stopping rules ψN ∈ DN , by Corollary 3.1, such that L(ψN ) = 1 + RN0 → 1 + R0 =
infψ′∈F L(ψ′), as N →∞.

Remark 3.7. The class F defined above is the largest class of stopping rules for which
our method works. For practical purposes, however, a more restricted class of stopping
rules may seem statistically more attractive, even when the problem is truncatable. For
example, let F1 be defined as the class of all stopping rules such that P0(τψ <∞) = 1
and P1(τψ <∞) = 1. Then, obviously, with F1 instead of F , Theorem 3.3 still holds.
However, this makes harder to comply with the requirement that ψ ∈ F1, in order that
the optimal stopping rule exist. For example, for i.i.d. observations, in Hawix and
Schmitz (1998) we find an example of a (non-randomized) test with a stopping rule ψ
satisfying (3.27) for any k = 1, 2, . . . , but such that ψ 6∈ F1, meaning that there is no
optimal stopping rule in F1.

4 APPLICATIONS

4.1 Modified Kiefer-Weiss Problem

In this section, we provide a solution, to the problem of minimizing Eτψ in the class
of all sequential tests (ψ, φ) with error probabilities not exceeding some given levels
(see Introduction).

Combining Theorems 2.1, 2.2 and 3.2 we immediately have the following

11



Theorem 4.1. Let the hypothesis testing problem (P, P0, P1) be truncatable. Let λ0 >
0 and λ1 > 0 be any numbers and ψ such that for any n = 1, 2, . . .

I{ln<fn+Rn} ≤ ψn ≤ I{ln≤fn+Rn} (4.1)

µn-almost everywhere on Cψn , where ln is defined in (2.13), and Rn is defined in (3.21),
and any φ such that

I{λ0f
n
0 <λ1f

n
1 } ≤ φn ≤ I{λ0f

n
0 ≤λ1f

n
1 } (4.2)

µn-almost everywhere on Sψn , n = 1, 2, . . .
Then for any (ψ′, φ′) such that

α(ψ′, φ′) ≤ α(ψ, φ) and β(ψ′, φ′) ≤ β(ψ, φ) (4.3)

it holds
Eτψ ≤ Eτψ′ . (4.4)

The inequality in (4.4) is strict if at least one of the inequalities in (4.3) is strict.
If there are equalities in all of the inequalities in (4.3) and (4.4) then ψ′ satisfies

(4.1) (with ψ′n instead of ψn) µ
n-almost everywhere on Cψ

′
n for any n = 1, 2, . . . ,

and φ′ satisfies (4.2) (with φ′n instead of φn) µ
n-almost everywhere on Sψ

′
n for any

n = 1, 2, . . . .

4.2 Kiefer-Weiss Problem

In this section, we generalize the problem of Kiefer and Weiss (1957) to general discrete-
time stochastic processes and propose a method for solving it, based on our results
above.

Let the distributions of the stochastic process we observe, X1, X2, . . . , Xn, . . . be
defined by a parametric family of joint density functions {fnθ (x1, . . . , xn), θ ∈ Θ, n ≥
1}. We suppose that fnθ (x1, . . . , xn) is measurable with respect to (θ, x1, . . . , xn) for
any n ≥ 1.

The Kiefer-Weiss problem is to minimize

sup
θ∈Θ

Eθτψ

in the class of all sequential tests (ψ, φ) such that

α(ψ, φ) =

∞∑
n=1

Eθ0s
ψ
nφn ≤ α and β(ψ, φ) =

∞∑
n=1

Eθ1s
ψ
n(1− φn) ≤ β,

where α, β ∈ [0, 1) are some constants.
Applying the well-known arguments relating Bayesian and minimax methods, we

get the following

Theorem 4.2. Let λ0 > 0, λ1 > 0 be any constants, and let there exist a probability
measure π such that

inf
ψ′,φ′

(∫
Θ

Eθτψ′dπ(θ) + λ0α(ψ′, φ′) + λ1β(ψ′, φ′)

)
(4.5)

is attained at some test (ψ, φ) for which

sup
θ∈Θ

Eθτψ =

∫
Θ

Eθτψdπ(θ).
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Then for any (ψ′, φ′) such that

α(ψ′, φ′) ≤ α(ψ, φ) and β(ψ′, φ′) ≤ β(ψ, φ) (4.6)

sup
θ∈Θ

Eθτψ ≤ sup
θ∈Θ

Eθτψ′ . (4.7)

If there is an equality in (4.7), then (ψ′, φ′) attains the infimum (4.5) as well, and,
additionally,

sup
θ∈Θ

Eθτψ′ =

∫
Θ

Eθτψ′dπ(θ).

Proof. It is very similar to that of Theorem 2.1 and is omitted here.

Remark 4.1. We can apply Theorem 3.2 when seeking for tests attaining (4.5). In-
deed, if we define P (·) =

∫
Pθ(·)dπ(θ), then Theorem 3.2, applied to the hypothesis

testing problem (P, Pθ0 , Pθ1), gives all the tests attaining (4.5), provided that the prob-
lem is truncatable.

Remark 4.2. In the particular case of one-point distribution π in Theorem 4.2, we
can apply Theorem 3.2 to the testing problem (Pθ, Pθ0 , Pθ1) directly, for finding tests
that attain (4.5). In this case, the objective function to be minimized,

Eθτψ + λ0α(ψ, φ) + λ1β(ψ, φ), (4.8)

is nothing else than the Lagrange-multiplier function for the modified Kiefer-Weiss
problem. For i.i.d. observations, essentially this was used by Weiss (1962) for solving
the original Kiefer-Weiss problem in some particular cases. He finds a test (ψ, φ)
minimizing (4.8), with some specific θ ∈ Θ, and such that

sup
θ′∈Θ

Eθ′τψ = Eθτψ.

Thus, the examples of Weiss (1962) may serve as examples of application of Theorem
4.2, where for his construction π(θ) = 1 should be taken.

Remark 4.3. By Corollary 3.2, both (P, Pθ0 , Pθ1) in Remark 4.1 and (Pθ, Pθ0 , Pθ1)
in Remark 4.2 are truncatable if∫

min{λ0f
n
θ0 , λ1f

n
θ1}dµ

n = Eθ0 min

{
λ0, λ1

fnθ1
fnθ0

}
→ 0, as n→∞ (4.9)

for some λ0 > 0 and λ1 > 0 (see condition ii) of the Corollary). By Theorem 2.2, the
left-hand side of (4.9) is the minimum value of the weighted sum of error probabilities,
when the (non-sequential) tests are based on the first n observations. Because of this,
it should be expected that it approaches zero, as n→∞, for any reasonable statistical
hypothesis testing problem. In particular, for i.i.d. observations this is always the case
if

µ{x : f1
θ0(x) 6= f1

θ1(x)} > 0

(see Novikov (2008a)).
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4.3 Bayes Sequential Testing of Two Composite Hypothe-
ses

In this section, we apply our main Theorem 3.2 to Bayesian testing of two composite
hypotheses.

As in preceding section, let us suppose that we have a parametric family of joint
“density” functions {fθ(x1, . . . , xn), θ ∈ Θ, n ≥ 1} where it is supposed that any
fθ(x1, . . . , xn) is measurable with respect to (θ, x1, . . . , xn), n = 1, 2, . . . . We consider
in this section the problem of sequential testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, where
Θ0 and Θ1 are some subsets of Θ such that Θ0 ∩Θ1 = ∅.

Let us suppose that there exists a prior distribution π on Θ.
For any sequential test (ψ, φ) the Bayes risk is defined as

w(ψ, φ) = c

∫
Θ

Eθτψdπ(θ) + a

∫
Θ0

αθ(ψ, φ)dπ(θ) + b

∫
Θ1

βθ(ψ, φ)dπ(θ). (4.10)

where

αθ(ψ, φ) =

∞∑
n=1

Eθs
ψ
nφn and βθ(ψ, φ) =

∞∑
n=1

Eθs
ψ
n(1− φn)

for θ ∈ Θ, being c > 0 some unitary observation cost, and a ≥ 0 and b ≥ 0 some losses
due to incorrect decisions.

We call a test (ψ, φ) Bayesian (for a given π) if its Bayesian risk (4.10) is a minimum
among all sequential tests. In this section we show how to find Bayesian sequential
tests for any prior distribution π.

Using the Fubini theorem, it is easy to see that∫
Θ0

αθ(ψ, φ)dπ(θ) =

∞∑
n=1

∫
sψnφn

∫
Θ0

fnθ dπ(θ)dµn = π0

∞∑
n=1

∫
sψnφng

n
0 dµ

n, (4.11)

where gn0 ≡
∫
Θ0
fnθ dπ(θ)/π0, π0 = π(Θ0), and∫

Θ1

βθ(ψ, φ)dπ(θ) =

∞∑
n=1

∫
sψn(1− φn)

∫
Θ1

fnθ dπ(θ)dµn = π1

∞∑
n=1

∫
sψn(1− φn)gn1 dµ

n,

(4.12)
where gn1 ≡

∫
Θ1
fnθ dπ(θ)/π1, π1 = π(Θ1), and that∫

Θ

Eθτψdπ(θ) = π0

∞∑
n=1

n

∫
sψng

n
0 dµ

n + π1

∞∑
n=1

n

∫
sψng

n
1 dµ

n

Therefore, the Bayes risk (4.10) is equivalent to

w(ψ, φ) =

∞∑
n=1

∫
sψn (cngn + φnaπ0g

n
0 + (1− φn)bπ1g

n
1 ) dµn, (4.13)

where gn = π0g
n
0 + π1g

n
1 =

∫
Θ
fnθ dπ(θ). Thus, w(ψ, φ)/c has the same structure as

L(ψ, φ) in (2.1), so we can use all the theory of Section 2 - Section 3 for finding tests
(ψ, φ) minimizing w(ψ, φ), i.e. Bayesian sequential tests.

To formulate the main theorem (Theorem 3.2) in this Bayesian context, we need
to re-define the key elements for the structure of optimal tests.

Let
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lN = min{π0ag
N
0 , π1bg

N
1 }, N = 1, 2, . . . . (4.14)

Define
V NN = lN (4.15)

and, recursively,

V Nk = min{lk, cgk +

∫
V Nk+1dµ(xk+1)} (4.16)

for any k = N − 1, N − 2, . . . , 1.
Let further

Vk = lim
N→∞

V Nk (4.17)

for any k = 1, 2, . . . , and

Rk = Rk(x1, . . . , xk) =

∫
Vk+1(x1, . . . , xk+1)dµ(xk+1), (4.18)

for k = 0, 1, . . . . Theorem 3.2, with the help of Theorem 2.2, transforms now to

Theorem 4.3. Let lk be defined by (4.14) and Rk by (4.18) by means of (4.17) and
(4.15) and (4.16). Then

w(ψ, φ) = inf
ψ′,φ′

w(ψ′, φ′) (4.19)

if and only if

I{lk<cgk+Rk} ≤ ψk ≤ I{lk≤cgk+Rk} (4.20)

µk-almost everywhere on Cψk , for any k = 1, 2, . . . , and

I{π0ag
k
0<π1bg

k
1 }
≤ φk ≤ I{π0ag

k
0≤π1bg

k
1 }

(4.21)

µk-almost everywhere on Sψk , for any k = 1, 2, . . . .

Remark 4.4. Because, by definition, any test (ψ, φ) satisfying (4.19) is Bayesian,
(4.20) and (4.21) give all Bayesian sequential tests for two composite hypotheses H0 :
θ ∈ Θ0 and H0 : θ ∈ Θ1. In particular, for two simple hypotheses (Θ0 = {θ0} and
Θ1 = {θ1}), Theorem 4.3 characterizes the structure of all Bayesian tests for the
problem considered in Cochlar and Vrana (1978). For independent, but not necessarily
identically distributed observations, it gives the structure of all Bayesian sequential
tests for the problem considered in Liu and Blostein (1992) (see also Section 2 in
Cochlar and Vrana (1978); more related results can be found in Novikov (2008a)).

For composite hypotheses, it gives the structure of all Bayesian tests for the problem
considered in Section 9.4 of Zacks (1971) in the particular case of k = 2 hypotheses,
a linear cost function (K(x1, . . . , xn) ≡ n), and constant losses due to incorrect de-
cisions. In Novikov (2009), there is a generalization of our present results to k ≥ 2
hypotheses. In particular, the structure of Bayesian sequential multiple hypothesis tests
can be easily obtained from Theorem 6 in Novikov (2009), just like we did it for the
case of two hypotheses in this section. More general loss functions, in both problems,
can be treated using a more general approach of Novikov (2008b).

There is a vast literature on asymptotic (as c → 0) shapes of Bayesian sequential
tests for two composite hypotheses when sampling from an exponential family, starting
from Schwarz (1962) (see an exhaustive list of references in Lai (1997), see also Lai
(2001)).
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4.4 Discrete-Time Markov Process

In this section, we apply Theorem 4.1 for optimal sequential testing of two simple
hypotheses about the distribution of a Markov process.

Let us suppose that, under the respective hypothesis Hj , j = 0, 1, the conditional
“density” of Xi, given Xi−1 = xi−1, is

fj,i(xi|xi−1), i = 2, 3, . . .

and let fj(x1) be the initial “density” (all the densities being with respect to some
σ-finite measure µ). In this case, the joint density function of (X1, . . . , Xk), under Hj ,
is

fkj = frj (x1, . . . , xr) = fj(x1)

k∏
i=2

fj,i(xi|xi−1), k = 1, 2, . . . , j = 0, 1. (4.22)

Let us define for any k = 1, 2, . . . the likelihood ratio as

zk =


fk1 /f

k
0 , if fk0 > 0,

∞ if fk0 = 0 and fk1 > 0

0 if fk0 = 0 and fk1 = 0.

In what follows we construct optimal sequential tests, which minimize E0τψ under
restrictions α(ψ, φ) ≤ α and β(ψ, φ) ≤ β (see Section 4.1).

Let us introduce the following family of functions ρnk = ρnk (z, x), k = 0, 1, . . . ,
n = 0, 1, . . . . Let

ρ0
k(z, x) = g(z) ≡ min{λ0, λ1z}, (4.23)

for any k = 0, 1, 2, . . . , and, recursively, for n = 1, 2, . . . ,

ρnk−1(z, x) = min

{
g(z), 1 +

∫
ρn−1
k

(
z
f1,k(xk|x)
f0,k(xk|x)

, xk

)
f0,k(xk|x)dµ(xk)

}
(4.24)

for k ≥ 2, and

ρn0 (z, x) = ρn0 (z) = min

{
g(z), 1 +

∫
ρn−1
1

(
z
f1(x1)

f0(x1)
, x1

)
f0(x1)dµ(x1)

}
. (4.25)

It is not difficult to see, by induction, that

V NN (x1, . . . , xN ) = ρ0
N (zN , xN )fN0 (x1, . . . , xN ),

and
V Nk (x1, . . . , xk) = ρN−kk (zk, xk)f

k
0 (x1, . . . , xk)

for k = N − 1, N − 2, . . . , 1, (see (3.8)), and that

RNk−1 =

∫
ρN−kk

(
zk−1

f1,k(xk|xk−1)

f0,k(xk|xk−1)
, xk

)
f0,k(xk|xk−1)dµ(xk)f

k−1
0 (4.26)

(see (3.9)).
It is easy to see (very much like in Lemma 3.3) that for any fixed k = 0, 1, . . .

ρNk (z, x) ≥ ρN+1
k (z, x), N = 0, 1, 2, . . .
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Thus, there exists
ρk(z, x) = lim

N→∞
ρNk (z, x), (4.27)

and, passing to the limit in (4.24), as n→∞, we have for k ≥ 2:

ρk−1(z, x) = min

{
g(z), 1 +

∫
ρk

(
z
f1,k(xk|x)
f0,k(xk|x)

, xk

)
f0,k(xk|x)dµ(xk)

}
. (4.28)

Analogously, from (4.25) we have

ρ0(z) = min

{
g(z), 1 +

∫
ρ1

(
z
f1(x1)

f0(x1)
, x1

)
f0(x1)dµ(x1)

}
. (4.29)

Let the integral on the right-hand side of (4.28) be denoted as rk−1(z, x), so (4.28)
is equivalent to

ρk−1(z, x) = min {g(z), 1 + rk−1(z, x)} , (4.30)

where

rk−1(z, x) =

∫
ρk

(
z
f1,k(xk|x)
f0,k(xk|x)

, xk

)
f0,k(xk|x)dµ(xk), k ≥ 2. (4.31)

Analogously, (4.29) is equivalent to

ρ0(z) = min {g(z), 1 + r0(z)} , (4.32)

where

r0(z) =

∫
ρ1

(
z
f1(x1)

f0(x1)
, x1

)
f0(x1)dµ(x1). (4.33)

Finally, passing to the limit, as N →∞, in (4.26), we have for k ≥ 2

Rk−1 = rk−1(zk−1, xk−1)f
k−1
0 , (4.34)

and
R0 = r0(1).

Using these expressions in Theorem 4.1, we immediately have

Theorem 4.4. Let λ0 > 0 and λ1 > 0 be any numbers and let ψ be any stopping time
such that for any n = 1, 2, . . .

I{g(zn)<1+rn(zn,xn)} ≤ ψn ≤ I{g(zn)≤1+rn(zn,xn)} (4.35)

µn-almost everywhere on Cψn ∩{fn0 > 0}, where g is defined by (4.23), and rn is defined
by (4.31), (4.27), and (4.24). And let φ be any decision rule such that

I{λ0f
n
0 <λ1f

n
1 } ≤ φn ≤ I{λ0f

n
0 ≤λ1f

n
1 } (4.36)

µn-almost everywhere on Sψn , n = 1, 2, . . .
Then for any (ψ′, φ′) such that

α(ψ′, φ′) ≤ α(ψ, φ) and β(ψ′, φ′) ≤ β(ψ, φ) (4.37)

it holds
E0τψ ≤ E0τψ′ . (4.38)

The inequality in (4.38) is strict if at least one of the inequalities in (4.37) is strict.
If there are equalities in all of the inequalities in (4.37) and (4.38) then ψ′ satisfies

(4.35) (with ψ′n instead of ψn) µ
n-almost everywhere on Cψ

′
n ∩ {fn0 > 0} for any

n = 1, 2, . . . , and φ′ satisfies (4.36) (with φ′n instead of φn) µ
n-almost everywhere on

Sψ
′

n for any n = 1, 2, . . . .
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Remark 4.5. It is not difficult to see that all ρnk (z, x), and ρk(z, x), for any x fixed,
are concave, continuous non-decreasing functions of z, for any k = 0, 1, 2, . . . , and for
any n = 0, 1, . . . . Because of this, the inequality g(zn) ≤ 1 + rn(zn, xn) defining an
optimal way of stopping at any stage n, is equivalent to

zn 6∈ (An(xn), Bn(xn)),

with some 0 < An(x) ≤ Bn(x) <∞, n = 1, 2, . . . .
If the Markov process is homogeneous, i.e.

f0,i(xi|xi−1) = f0(xi|xi−1) and f1,i(xi|xi−1) = f1(xi|xi−1)

for any i = 2, 3, . . . , then, obviously, ρk(z, x) = ρ1(z, x) for any k = 2, 3, . . . , and
therefore An(x) = A(x) and Bn(x) = B(x) for any n = 1, 2, . . . .

It should be noted that in the case of homogeneous Markov process with a finite
number of values, Schmitz (1968) sketched a proof of the fact that for any prior distri-
bution there exists a Bayes sequential test with a stopping time of type (in our terms)

τ = min{n : zn 6∈ (A(xn), B(xn))}

with A(x) > 0 and B(x) <∞.

Remark 4.6. Wald (1945) proposed the use of the sequential probability ratio test for
any discrete-time stochastic process, and through decades this has been a popular topic
in sequential analysis of stochastic processes, in particular, Markov chains (see, for
example, Schmitz and Süselbeck (1983), where other references can be found). From
Theorem 4.4 we see that, generally speaking, SPRTs are not optimal for discrete-time
Markov processes, unless rn(z, x) in Theorem 4.4 does not depend on both x and n.
In the following section we give a class of Markov processes where this is the case.

4.5 An Example: Optimal Sequential Test for Location
Parameter of AR(1) Process.

In this section, we apply the results of the preceding section to a specific model of an
autoregressive process of order 1 (AR(1) process).

Let X1, X2, . . . be a Markov process defined in the following way:

Xn+1 − θ = a(Xn − θ) + εn, (4.39)

for n = 1, 2, . . . , where ε1, ε2, . . . are i.i.d. random variables with a probability density
function f(x) (with respect to the Lebesgue measure λ on the real line). We also
suppose that X1 is independent of (ε1, ε2, . . . ). Let us apply the results above for
constructing optimal sequential tests for testing H0 : θ = θ0 vs. H1 : θ = θ1, θ0 6= θ1,
supposing that a in (4.39) is a fixed known constant.

For this process,

fj,i(xi|xi−1) = f(xi − axi−1 − θj(1− a)), (4.40)

i = 2, 3, . . . , j = 0, 1. Let f0(x) = h(x− θ0) and f1(x) = h(x− θ1) be initial densities
of X1, with respect to λ, under H0 and H1, respectively.
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The joint density functions (4.22) are now

fnj (x1, . . . , xn) = h(x1 − θj)

n∏
i=2

f(xi − axi−1 − θj(1− a)), j = 0, 1. (4.41)

We use Theorem 4.4 for construction of tests which minimize E0τψ in the class of
all sequential tests such that α(ψ, φ) ≤ α and β(ψ, φ) ≤ β, with some constant α and
β.

We start with defining
ρ0(z) = g(z)

(see 4.23). To apply (4.24), let us calculate the integral on the right-hand side of it:∫
ρn−1

(
z
f(xi − ax− θ1(1− a))

f(xi − ax− θ0(1− a))

)
f(xi − ax− θ0(1− a))dλ(xi)

=

∫
ρn−1

(
z
f(y − (θ1 − θ0)(1− a))

f(y)

)
f(y)dλ(y)

because of invariance of the Lebesgue measure. We see that this integral does not
depend on x, thus, (4.24) converts to

ρn(z) = ρn(z, x) = min

{
g(z), 1 +

∫
ρn−1

(
z
f(y − (θ1 − θ0)(1− a))

f(y)

)
f(y)dλ(y)

}
(4.42)

and is to be applied for any n = 1, 2, . . . .
With

ρ(z) = lim
n→∞

ρn(z) (4.43)

(see (4.27)), we have from (4.42)

ρ(z) = min{g(z), 1 + r(z)},

where

r(z) = rk(z, x) =

∫
ρ

(
z
f(y − (θ1 − θ0)(1− a))

f(y)

)
f(y)dλ(y) (4.44)

(see (4.31)).
Theorem 4.4, applied to this special case, gives now all the optimal sequential tests

in the following form.

Theorem 4.5. Let λ0 > 0 and λ1 > 0 be any numbers and let ψ be any stopping time
such that for any n = 1, 2, . . .

I{g(zn)<1+r(zn)} ≤ ψn ≤ I{g(zn)≤1+r(zn)} (4.45)

µn-almost everywhere on Cψn ∩ {fn0 > 0}, where g(z) is defined by (4.23), and r(z) is
defined by (4.44), through (4.43), and (4.42). And let φ be any decision rule such that

I{λ0f
n
0 <λ1f

n
1 } ≤ φn ≤ I{λ0f

n
0 ≤λ1f

n
1 } (4.46)

µn-almost everywhere on Sψn , n = 1, 2, . . .
Then for any (ψ′, φ′) such that

α(ψ′, φ′) ≤ α(ψ, φ) and β(ψ′, φ′) ≤ β(ψ, φ) (4.47)
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it holds
E0τψ ≤ E0τψ′ . (4.48)

The inequality in (4.48) is strict if at least one of the inequalities in (4.47) is strict.
If there are equalities in all of the inequalities in (4.47) and (4.48) then ψ′ satisfies

(4.45) (with ψ′n instead of ψn) µ
n-almost everywhere on Cψ

′
n ∩ {fn0 > 0} for any

n = 1, 2, . . . , and φ′ satisfies (4.46) (with φ′n instead of φn) µ
n-almost everywhere on

Sψ
′

n for any n = 1, 2, . . . .

It is easy to see that the optimal tests in Theorem 4.5 are randomized SPRTs, i.e.
that the inequality g(z) ≤ 1 + r(z), defining a way of optimal stopping in (4.45), is
equivalent to z 6∈ (A,B), with some 0 < A ≤ B < ∞ (see Remark 4.5). In fact, the
optimal tests in Theorem 4.5 coincide with those of a sequential testing problem for
independent observations.

Indeed, let Y1 = X1, Y2 = X2 − aX1, Y3 = X3 − aX2, . . . . Then, by (4.39),
Yn = θ(1− a) + εn−1, n = 2, 3, . . . , with densities

fθ,n(xn) = f(xn − θ(1− a)),

n ≥ 2, and
fθ,1(x1) = h(x1 − θ).

and Y1 is independent of Y2, Y3, . . . .
Because, obviously, the likelihood ratio zn based on X1, . . . , Xn coincides with the

likelihood ratio based on Y1, . . . , Yn as defined in Novikov (2008a), it is easy to see that
any optimal test in Theorem 4.5 coincides with a respective optimal test in Theorem
6 in Novikov (2008a). Thus, in this particular case of AR(1) process we have the
following Theorem.

Theorem 4.6. Let 0 < A < B <∞ be any real numbers, and let for any n = 1, 2, . . .

I{zn 6∈[A,B]} ≤ ψn ≤ I{zn 6∈(A,B)} (4.49)

µn-almost everywhere on Cψn ∩ ({fn0 > 0} ∪ {fn1 > 0}). And let φ be a decision rule
defined by

φn = I{zn≥B}, (4.50)

for n = 1, 2, . . . .
Then for any (ψ′, φ′) such that

α(ψ′, φ′) ≤ α(ψ, φ) and β(ψ′, φ′) ≤ β(ψ, φ) (4.51)

it holds
E0τψ ≤ E0τψ′ and E1τψ ≤ E1τψ′ . (4.52)

Both inequalities in (4.52) are strict if at least one of the inequalities in (4.51) is strict.
If there are equalities in all of the inequalities in (4.51) and in one of the inequalities

in (4.52), then there are equalities in both inequalities in (4.52), and ψ′ satisfies (4.49)

(with ψ′n instead of ψn) µ
n-almost everywhere on Cψ

′
n ∩ ({fn0 > 0}∪{fn1 > 0}) for any

n = 1, 2, . . . , and φ′ satisfies (4.50) (with φ′n instead of φn) µ
n-almost everywhere on

Sψ
′

n ∩ ({fn0 > 0} ∪ {fn1 > 0}) for any n = 1, 2, . . . .

Proof. Follows from the proof of Theorem 6 in Novikov (2008a).

20



Remark 4.7. It is not difficult to see that, in the same way, the results of Section
4.1 in Novikov (2008a) allow to find optimal sequential tests of two simple hypotheses
about the location parameter in any case of autoregressive process of finite order p ≥ 1,
AR(p).

Remark 4.8. In essence, Theorem 6 in Novikov (2008a) states that any SPRT con-
serves its Wald-Wolfowitz optimality property when the distribution of the first obser-
vation does not necessarily match the common distribution of all other observations,
provided that all of them (starting from the first one) are independent. Under some
additional conditions, this fact was noted by Schmitz (1973), a reference which should
have been added into the reference list in Novikov (2008a).

5 APPENDIX. PROOFS OF THE MAIN RESULTS

5.1 Proof of Theorem 2.2

Let us prove first the following Lemma which will also be helpful in other proofs below.

Lemma 5.1. Let φ, F1, F2 be some measurable functions on a measurable space with
a measure µ, such that

0 ≤ φ(x) ≤ 1, F1(x) ≥ 0, F2(x) ≥ 0,

and ∫
min{F1(x), F2(x)}dµ(x) <∞.

Then∫
(φ(x)F1(x) + (1− φ(x))F2(x))dµ(x) ≥

∫
min{F1(x), F2(x)}dµ(x) (5.1)

with an equality if and only if

I{F1(x)<F2(x)} ≤ φ(x) ≤ I{F1(x)≤F2(x)} (5.2)

µ-almost anywhere.

Proof. To prove (5.1) it suffices to show that∫
[(φ(x)F1(x) + (1− φ(x))F2(x))−min{F1(x), F2(x)}]dµ(x) ≥ 0 (5.3)

which is trivial because the function under the integral sign is non-negative.
Being so, there is an equality in (5.3) if and only if

φ(x)F1(x) + (1− φ(x))F2(x) = min{F1(x), F2(x)},

or
φ(x)(F1(x)− F2(x)) = min{F1(x), F2(x)} − F2(x),

µ-almost anywhere, which is only possible if (5.2) holds true.
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To prove (2.10), let us give to the left-hand side of it the form

λ0α(ψ, φ) + λ1β(ψ, φ)) =

∞∑
n=1

∫
(1−ψ1) . . . (1−ψn−1)ψn[φnλ0f

n
0 + (1− φn)λ1f

n
1 ]dµn

(5.4)
(see (1.3) and (1.4)).

Applying Lemma 5.1 to each summand in (5.4) we immediately have:

λ0α(ψ, φ) + λ1β(ψ, φ) ≥
∞∑
n=1

∫
(1− ψ1) . . . (1− ψn−1)ψn min{λ0f

n
0 , λ1f

n
1 }dµn (5.5)

with an equality if and only if φn satisfies (2.11) µn-almost everywhere on Sψn , for any
n = 1, 2, . . .

5.2 Proof of Lemma 3.1

Obviously, (3.2) is equivalent to∫
sψk (kfk + lk)dµ

k +

∫
cψk+1

(
(k + 1)fk+1 + vk+1

)
dµk+1 ≥

∫
cψk

(
kfk + vk

)
dµk.

(5.6)
By the Fubini theorem, the left-hand side of (5.6) is equal to∫

sψk (kfk + lk)dµ
k +

∫
cψk+1

(∫ (
(k + 1)fk+1 + vk+1

)
dµ(xk+1)

)
dµk

=

∫
cψk [ψk(kf

k + lk) + (1− ψk)

∫ (
(k + 1)fk+1 + vk+1

)
dµ(xk+1)]dµ

k. (5.7)

Because fk+1(x1, . . . , xk+1) is a joint density function of (X1, . . . , Xk+1), we have∫
fk+1(x1, . . . , xk+1)dµ(xk+1) = fk(x1, . . . , xk),

so that the right-hand side of (5.7) transforms to∫
cψk

[
kfk + ψklk + (1− ψk)

(
fk +

∫
vk+1dµ(xk+1)

)]
dµk. (5.8)

Applying Lemma 5.1 we see that (5.8) is greater than or equal to∫
cψk

[
kfk + min{lk, fk +

∫
vk+1dµ(xk+1)}

]
dµk =

∫
cψk

(
kfk + vk

)
dµk, (5.9)

by the definition of vk in (3.3).
Moreover, by the same Lemma 5.1, (5.8) is equal to (5.9) if and only if (3.4) holds

µk-almost everywhere on Cψk .
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5.3 Proof of Lemma 3.2

Let us prove first that if (3.14) is satisfied for any ψ such that Eτψ <∞ and for any
λ0 > 0 and λ1 > 0, then the problem (P, P0, P1) is truncatable.

Let ψ be any stopping rule such that P (τψ < ∞) = 1. Let us show that (3.14) is
fulfilled for any λ0 > 0 and λ1 > 0.

Let L(ψ) = L(ψ;λ0, λ1) <∞, leaving the possibility L(ψ) = ∞ till the end of the
proof. Let us calculate the difference between L(ψ) and LN (ψ) in order to show that
it goes to zero as N →∞. By (2.12) and (3.12)

L(ψ)− LN (ψ) =

∞∑
n=N

∫
sψn(nfn + ln)dµn −

∫
cψN

(
NfN + lN

)
dµN . (5.10)

The first summand converges to zero, as N → ∞, being the tail of a convergent
series (this is because L(ψ) <∞).

We have further ∫
cψN lNdµ

N → 0

as N →∞, because of (3.14).
It remains to show that∫

cψNNf
NdµN = NP (τψ ≥ N) → 0 as N →∞. (5.11)

But this is again due to the fact that L(ψ) <∞ which implies that Eτψ <∞.
Let now L(ψ) = ∞.
This means that

∞∑
n=1

∫
sψn(nfn + ln)dµn = ∞

which immediately implies by (3.12) that

LN (ψ) ≥
N−1∑
n=1

∫
sψn(nfnθ + ln)dµn →∞.

The “if”-part of Lemma 3.2 is proved.
Supposing now that the problem (P, P0, P1) is truncatable and that ψ is any stop-

ping rule with Eτψ <∞, from (3.13) it follows that the right-hand side of (5.10) tends
to 0, as N → ∞, and because, again, the first summand in (5.10) tends to zero, for
the same reason as above, and so does

∫
cψNNf

NdµN , as N →∞, (3.14) follows.

5.4 Proof of Corollary 3.2

Let us suppose that i) is satisfied. Let ψ be any stopping rule such that Eτψ < ∞.
Then for any i = 0, 1 such that

Pi(τψ <∞) = 1,

we have ∫
cψn min{λ0f

n
0 , λ1f

n
1 }dµn ≤ λi

∫
cψnf

n
i dµ

n = λiPi(τψ ≥ n) → 0,
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as n→∞. That is, condition (3.14) is fulfilled. By Lemma 3.2 the problem (P, P0, P1)
is truncatable.

Let us show that under condition iii) of Corollary 3.2 the problem (P, P0, P1) is
truncatable as well.

Let

Zn =
fn1 (X1, . . . , Xn)

fn0 (X1, . . . , Xn)
, n = 1, 2, . . .

.
If iii) is satisfied, then for any λ0 > 0 and λ1 > 0∫

min{λ0f
n
0 , λ1f

n
1 }dµn = E0 min{λ0, λ1Zn} → 0, (5.12)

as n → ∞, because x 7→ min{λ0, λ1x} is a non-negative continuous and bounded
function of x. Because cψn ≤ 1 for any ψ and for any n = 1, 2, . . . , (3.14) now follows
from (5.12). Again, by Lemma 3.2 the problem (P, P0, P1) is truncatable.

If ii) holds, then

E0 min{λ0, λ1Zn} =

∫
min{λ0f

n
0 , λ1f

n
1 }dµn → 0,

as n→∞. Thus, min{λ0, λ1Zn} → 0 in P0-probability. For any 0 < ε < λ0 we have:

P0(Zn > ε/λ1) = P0(λ1Zn > ε) = P0(min{λ0, λ1Zn} > ε) → 0,

as n → ∞, which implies that Zn → 0 as n → ∞ in P0-probability. Therefore,
condition iii) of the Lemma is satisfied. Above we proved that it implies (3.14). By
Lemma 3.2 it follows that the problem (P, P0, P1) is truncatable.

5.5 Proof of Lemma 3.5

Let us denote
U = inf

ψ
L(ψ), UN = inf

ψ∈DN
L(ψ).

By Corollary 3.1, for any N = 1, 2, . . .

UN = 1 +RN0 .

Obviously, UN ≥ U for any N = 1, 2, . . . , so

lim
N→∞

UN ≥ U. (5.13)

Let us show first that there is an equality in (5.13).
Suppose the contrary, i.e. that limN→∞ UN = U + 4ε, with some ε > 0. We

immediately have from this that

UN ≥ U + 3ε (5.14)

for all sufficiently large N .
On the other hand, by the definition of U there exists a ψ such that U ≤ L(ψ) ≤

U + ε.
Because, for a truncated problem, LN (ψ) → L(ψ), as N →∞, we have that

LN (ψ) ≤ U + 2ε (5.15)
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for all sufficiently large N as well. Because, by definition, LN (ψ) ≥ UN , we have that

UN ≤ U + 2ε

for all sufficiently large N , which contradicts (5.14).
Now, (3.23) follows from the monotone convergence theorem, because

U = lim
N→∞

UN = 1 + lim
N→∞

∫
V N1 (x)dµ(x) = 1 +

∫
V1(x)dµ(x) = 1 +R0.

5.6 Proof of Theorem 3.2

Let ψ be any stopping rule. By Lemma 3.4 for any fixed k ≥ 1 the following inequalities
hold:

L(ψ) ≥
k∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψk+1

(
(k + 1)fk+1 + Vk+1

)
dµk+1(5.16)

≥
k−1∑
n=1

∫
sψn(nfn + ln)dµn +

∫
cψk

(
kfk + Vk

)
dµk (5.17)

≥ . . .

≥
∫
sψ1 (f1 + l1)dµ

1 +

∫
cψ2

(
2f2 + V2

)
dµ2 (5.18)

≥ 1 +

∫
V1(x)dµ(x) = 1 +R0. (5.19)

Supposing (3.24), by Lemma 3.5 we have that there are equalities in all the inequalities
(5.16) – (5.19).

Applying Lemma 3.1, we see that (3.25) is fulfilled µk-almost everywhere on Cψk ,
for any k = 1, 2, . . . , because, by (3.20), it is a necessary condition of equality in the
respective inequality in (5.16) – (5.19). The “only if”-part of Theorem 3.2 is proved.

Let now ψ satisfy (3.25) µk-almost everywhere on Cψk , for any k = 1, 2, . . . .
It follows from Lemma 3.1 and (3.20) that all the inequalities in (5.17) – (5.19)

are in fact equalities, i.e.

k∑
n=1

∫
sn(nfn + ln)dµn +

∫
cψk+1

(
(k + 1)fk+1 + Vk+1

)
dµk+1 = 1 +R0 (5.20)

for any k = 0, 1, 2, . . . .
In particular, this means that∫

cψk+1

(
(k + 1)fk+1

)
dµk+1 = (k + 1)P (τψ ≥ k + 1) ≤ 1 +R0.

Because of this,
P (τψ ≥ k + 1) ≤ (1 +R0)/(k + 1) → 0,

as k →∞, and hence
P (τψ <∞) = 1. (5.21)

It follows by Corollary 2.1 now that

L(ψ) = lim
k→∞

k∑
n=1

∫
sψn(nfn + ln)dµn,
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which implies, by virtue of (5.20), that L(ψ) ≤ 1 +R0.
On the other hand, by Lemma 3.4, L(ψ) ≥ 1 +R0.
Thus, L(ψ) = 1 +R0.
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